
Copyright 2003 IEEE. Published in the Proceedings of the International Conference on Software Engineering, May 3-5, 2003, Portland,
Oregon, USA.

New Directions on Agile Methods:
A Comparative Analysis

Pekka Abrahamssona, Juhani Warstab, Mikko T. Siponenb and Jussi Ronkainena

aTechnical Research Centre of Finland, VTT Electronics
P.O.Box 1100, FIN-90571 Oulu, Finland

bDepartment of Information Processing Science
P.O.Box 3000, FIN-90014 University of Oulu, Finland

{Pekka.Abrahamsson, Jussi.Ronkainen}@vtt.fi, {Juhani.Warsta, Mikko.T.Siponen}@oulu.fi

Abstract

Agile software development methods have caught the
attention of software engineers and researchers
worldwide. Scientific research is yet scarce. This paper
reports results from a study, which aims to organize,
analyze and make sense out of the dispersed field of agile
software development methods. The comparative analysis
is performed using the method’s life-cycle coverage,
project management support, type of practical guidance,
fitness-for-use and empirical evidence as the analytical
lenses. The results show that agile software development
methods, without rationalization, cover certain/different
phases of the software development life-cycle and most of
them do not offer adequate support for project
management. Yet, many methods still attempt to strive for
universal solutions (as opposed to situation
appropriate) and the empirical evidence is still very
limited. Based on the results, new directions are
suggested. In principal, it is suggested to place emphasis
on methodological quality – not method quantity.

1. Introduction

 Agile – denoting “the quality of being agile; readiness
for motion; nimbleness, activity, dexterity in motion”
(http://dictionary.oed.com) – software development
methods attempt to offer once again an answer to the
eager business community asking for lighter weight along
with faster and nimbler software development processes.
This is especially the case with the rapidly growing and
volatile Internet software industry as well as with the
emerging mobile application environment. The new agile
methods have evoked a substantial amount of literature
and debates [e.g., 1, 2, 3].

Agile proponents claim that the focal aspects of light
and agile methods are simplicity and speed [4-6]. In
development work, accordingly, development groups
concentrate only on the functions needed immediately,
delivering them fast, collecting feedback and reacting
rapidly to business and technology changes [7-9].

The emerging of numerous different agile methods has
exploded during the last years and is not showing any
signs of ceasing. This has resulted in a situation where
researchers and practitioners are not aware of the existing
approaches or their suitability for varying real-life software
development situations. As for researchers and method
developers, the lack of unifying research hinders the
ability to establish a reliable and cumulative research
tradition.

The aim of this paper is to organize, analyze and make
sense out of the dispersed field of agile software
development methods. Based on the result of the analysis,
practitioners are in a better position to understand the
various properties of each method and make their
judgment in a more informed way. For these purposes, an
analytic framework is constructed, which guides the
analysis of the different existing methods. To scrutinize
the agile methods the following five perspectives are
chosen: software development life-cycle including the
process aspect, project management, abstract principles
vs. concrete guidance, universally predefined vs. situation
appropriate (i.e., fit-for-use), and empirical evidence.

The rest of the paper is composed as follows. The
second section presents a short overview of the existing
agile methods. The third section presents the lenses for
the subsequent analysis. The fourth section presents a
comparative analysis of the referred methods and the fifth
section discusses the significance and the limitations of
the findings. The sixth section concludes this study,
recapitulating the key findings.

Copyright 2003 IEEE. Published in the Proceedings of the International Conference on Software Engineering, May 3-5, 2003, Portland,
Oregon, USA.

2. An overview of agile methods

In this section the existing agile methods are identified
and their objectives briefly introduced. Figure 1 shows the
manifold agile software development methods and their
interrelationships together with their evolutionary paths.
Figure 1, purposefully, extends the considerations beyond
the scope of this paper. This means that some, more
philosophical meta-level expositions, which have in their
turn impinged upon the preceding agile methods either
directly or indirectly are included in the diagram. Figure 1
also depicts (i.e., using a dashed line) which methods (or
method developers) contributed to the publication of the
agile manifesto. (http://www.agilemanifesto.org).

For the purposes of this paper, agile software
development in general is characterized by the following
attributes: incremental, cooperative, straightforward, and
adaptive [10]. Incremental refers to small software releases,
with rapid development cycles. Cooperative refers to a
close customer and developer interaction. Straightforward
implies that the method itself is easy to learn and to
modify and that it is sufficiently documented. Finally,
adaptive refers to the ability to make and react to last
moment changes. Due to limited space, readers are referred
to [10] for further discussion on other possible
characterizations. In the following, each method’s
objectives are briefly introduced.

Adaptive software development. Adaptive software
development (ASD) [11] attempts to bring about a new
way of seeing the software development in an
organization, promoting an adaptive paradigm. It offers
solutions for the development of large and complex
systems. The method encourages incremental and iterative
development, with constant prototyping. One ancestor of
ASD is “RADical Software Development” [12]. ASD
claims to provide a framework with enough guidance to
prevent projects from falling into chaos, but not too much,
which could suppress emergence and creativity.

Agile modeling. Agile modeling (AM) [13] is a new
approach for performing modeling activities. It attempts to
adapt modeling practices using an agile philosophy as its
backbone. The key focus in AM, therefore, is on modeling
practices and cultural principles. The underlying idea is to
encourage developers to produce sufficiently advanced
models to support acute design needs and documentation
purposes. The aim is to keep the amount of models and
documentation as low as possible. Cultural issues are
addressed by depicting ways to encourage
communication, and to organize team structures and ways
of working.

Crystal family. The Crystal family of methodologies
[14-16] includes a number of different methods from which
to select the most suitable one for each individual project.

Besides the methods, the Crystal approach also includes
principles for tailoring these methods to fit the varying
circumstances of different projects. Each member of the
Crystal family is marked with a color indicating the
‘heaviness’ of the method. Crystal suggests choosing the
appropriate-colored method for a project based on its size
and criticality. Larger projects are likely to ask for more
coordination and heavier methods than smaller ones.
Crystal methods are open for any development practices,
tools or work products, thus allowing the integration of,
for example, XP and Scrum practices.

Dynamic systems development method. Dynamic
systems development method (DSDM) [17, 18] is a method
developed by a dedicated consortium in the UK. The first
release of the method was in 1994. The fundamental idea
behind DSDM is that instead of fixing the amount of
functionality in a product, and then adjusting time and
resources to reach that functionality, it is preferred to fix
time and resources, and then adjust the amount of
functionality accordingly. The origins of DSDM are in
rapid application development. DSDM can be seen as the
first truly agile software development method.

Extreme programming. Extreme programming (XP) [5,
19, 20] is a collection of well-known software engineering
practices. XP aims at enabling successful software
development despite vague or constantly changing
software requirements. The novelty of XP is based on the
way the individual practices are collected and lined up to
function with each other. Some of the main characteristics
of XP are short iterations with small releases and rapid
feedback, close customer participation, constant
communication and coordination, continuous refactoring,
continuous integration and testing, collective code
ownership, and pair programming.

Feature-driven development. Feature-driven
development (FDD) [21, 22] is a process-oriented software
development method for developing business critical
systems. The FDD approach focuses on the design and
building phases. The FDD approach embodies iterative
development with the practices believed to be effective in
industry. The specific blend of these ingredients makes
the FDD processes unique for each case. It emphasizes
quality aspects throughout the process and includes
frequent and tangible deliveries, along with accurate
monitoring of the progress of the project.

Internet-speed development. Internet-speed
development (ISD) [23-25] is arguably the least known
approach to agile software development. ISD refers to a
situation where software needs to be released fast,
thereby requiring short development cycles. ISD puts
forth a descriptive, management-oriented framework for
addressing the problem of handling fast releases. This
framework consists of time drivers, quality dependencies
and process adjustments.

Copyright 2003 IEEE. Published in the Proceedings of the International Conference on Software Engineering, May 3-5, 2003, Portland,
Oregon, USA.

Fiction of universal methods
(Malouin and Landry, 1983)

1990

2000

Prototyping methodology
(e.g., Lantz, 1986)

Spiral model
(Boehm, 1986)Evolutionary life-cycle

(Gilb, 1988)

Rapid application
development (RAD)
(e.g., Martin, 1991)

RADical software
development (Bayer
and Highsmith, 1994)

Adaptive Software Development
(ASD) (Highsmith, 2000)

Dynamic systems
development method
(DSDM, 1995)

Object oriented
approaches

Unified modeling
language (UML)

Rational Unified
Process (RUP)
(Kruchten, 2000)

Feature-Driven
Development (FDD)
(Palmer and Felsing, 2002)

Crystal family
of methodologies
(Cockburn , 1998; 2001) Extreme Programming (XP)

(Beck, 1999)

Agile Modeling (AM)
(Ambler, 2002)

Pragmatic
Programming (PP)
(Hunt and Thomas,
2000)

Open Source
Software (OSS)
development

Internet technologies,
distributed software
development

Methodology
Engineering
(Kumar and
Welke, 1992)

Amethodological IS
development
(Baskerville, 1992;
Truex et al., 2001)

IS development in
emergent organizations
(Truex et al., 1999)

Agile manifesto
(Beck et al., 2001)

New product development game
(Takeuchi and Nonaka, 1986)

Scrum development
process
(Schwaber, 1995;
Schwaber and
Beedle , 2001)

Synch-and-stabilize
approach (Microsoft)
(Cusumano and Selby, 1995;
1997)

Internet-speed development
(Cusumano and Yoffie , 1999;
Baskerville et al., 2001;
Baskerville and Pries-Heje , 2001)

Figure 1. Evolutionary map of agile methods.

These are rules under which companies have survived in
ISD. In this context the ‘process adjustment’ means
focusing on good people instead of process, i.e., “if
people are mature and talented, there is less need for
process” [23, p. 56]. The framework for ISD is considered
as more management and business-oriented than other
related approaches. ISD draws from the “Synch-and-
stabilize” approach by Microsoft, aimed at coping with a
fast-moving, or even chaotic, software development
business [26], and from emergent organizations, which are
organizations having a fast pace of organizational change
– an opposite to stable organizations [27]. ISD’s
theoretical background stems from Amethodological IS
development [28, 29], which argues that software
development is a collection of random, opportunistic
processes driven by accident. These processes are
simultaneous, overlapping and there are gaps and the
development itself occurs in completely unique and
idiographic forms. Finally, the development is negotiated,
compromised and capricious as opposed to predefined,
planned and mutually agreed.

Pragmatic programming. Pragmatic programming (PP)
[30] introduces a set of programming “best practices”. It
puts forward techniques that concretely augment the

practices discussed in the other agile methods. PP covers
most programming practicalities. The “method” itself is a
collection of short tips that focus on day-to-day problems ;
there are a total of 70 of them. These practices take a
pragmatic perspective and place focus on incremental,
iterative development, rigorous testing, and user-centered
design.

Scrum. The Scrum [31, 32] approach has been
developed for managing the software development
process in a volatile environment. It is an empirical
approach based on flexibility, adaptability and
productivity. Scrum leaves open for the developers to
choose the specific software development techniques,
methods, and practices for the implementation process. It
involves frequent management activities aiming at
consistently identifying any deficiencies or impediments
in the development process as well as the in the practices
that are used.
3. Lenses for the analysis

In order to make sense and scrutinize the existing agile
methods, proper analytic tools are need. Many such
analytical tools have been proposed and used [e.g., 33,
34]. The following five analytical lenses were seen as

Copyright 2003 IEEE. Published in the Proceedings of the International Conference on Software Engineering, May 3-5, 2003, Portland,
Oregon, USA.

relevant and complementary for addressing the research
purposes of the paper (Table 1).

Table 1. Lenses for the analysis.

Perspective Description Key
references

Software
developmen
t life-cycle

Which stages of the
software development life-
cycle does the method cover

[35, 36]

Project
management

Does the method support
project management
activities

[37, 38]

Abstract
principles
vs. concrete
guidance

Does the method mainly rely
on abstract principles or
does it provide concrete
guidance

[39]

Universally
predefined
vs. situation
appropriate

Is the method argued to fit
per se in all agile
development situations

[37]

Empirical
evidence

Does the method have
empirical support for its
claims

[37, 40-42]

A software development life-cycle is a sequence of
processes that an organization employs to conceive,
design, and commercialize a software product [35, 36]. A
software development life-cycle perspective is needed to
observe which phases of the software development
process the agile methods cover. A software development
life-cycle can be seen as consisting of nine phases [e.g.,
43]: project inception, requirements specification, design,
coding, unit test, integration test, system test, acceptance
test, system in use (i.e., maintenance). Life-cycle coverage
also includes that the process through which the software
production proceeds needs to be identified.

Methods should be efficient (as opposed to time and
resource consuming) [37]. Efficiency requires the existence
of project management activities to enable the proper
execution of software development tasks. Project
management is thus a support function that provides the
backbone for efficient software development [38].
Therefore, a project management perspective can be seen
as a relevant dimension in the evaluation of agile software
development methods.

Software development methods are often used for other
purposes than originally intended by their authors [39].
For example, Wastel [44] observed that methodologies act
as a social defense operating as a set of organizational
rituals. Thus, in order to evaluate whether the methods
can be used for other purposes than the necessary fiction
of control [39], a perspective of abstract principles versus
concrete guidance is needed. It will be evaluated whether
the agile software methods provide any concrete guidance

or do they rely on abstract rules of thumb. “Respect
people” without instructing how to actually perform it is
an example of an abstract principle. Concrete guidance, on
the other hand, refers to practices, activities and work
products at the different phases of the software
development life-cycle.

The Universally predefined versus situation
appropriate viewpoint stems from the works of Kumar
and Welke [37], Malouin and Landry [45], and Truex et
al.[29]. Universally predefined means a view according to
which there is one method or methodology that fits as
such to all (agile) development situations. In other words,
a universally predefined viewpoint proposes one ready-
made solution to all (agile) SW development endeavors.
The view of situation appropriate, as opposed to
universally predefined, holds that there can be no
predetermined set of methods that would fit per se to all
(agile) software development situations. In other words,
situation appropriate refers to the extent to which a
method is adjustable depending on the situation.

Empirical support is needed to see what kind of
empirical evidence the agile methods are grounded upon.
Clearly, one of the most important aspects of research is
the use of proper research methods [46]. Since software
development has a strong practical orientation, there is
need for studying the different agile methods in real life
situations [cf., 40, 41, 42], i.e., using empirical studies. This
viewpoint explores what, if any, empirical support the
different methods have.
4. Comparative analysis of the existing agile
methods

In this section, the existing agile methods are compared
using the analytical lenses defined in section three. Thus,
for each method the software life-cycle coverage, project
management support, type of guidance, situation
appropriateness and the level of empirical support is
evaluated. Each perspective will be analyzed separately.

Figure 2 serves for the purposes of the first three
lenses. Each method is divided into three bars. The
uppermost bar indicates whether a method provides
support for project management (analyzed in section 4.1).
The middle bar indicates whether a process through which
the software production proceeds is described (pertaining
to software development life-cycle analysis). The length of
the bar shows which phases of software development are
supported by different agile methods (analyzed in section
4.2). Finally, the lowest bar shows whether a method relies
mainly on abstract principles (white color) or does it
provide concrete guidance (gray color). This will be
analyzed in section 4.3.

In general, a gray color in a block indicates that the
method covers the perspective analyzed while a white
color indicates lack of such support.

Copyright 2003 IEEE. Published in the Proceedings of the International Conference on Software Engineering, May 3-5, 2003, Portland,
Oregon, USA.

Project
inception

System
in use

Requirements
specification

Design Code Unit test Integration
test

System
test

Acceptance
test

XP

Scrum

AM

PP

FDD

Crystal

ASD

DSDM

Project management supported
Offers concrete guidanceProcess described

ISD

Figure 2. Comparing life-cycle, project management and concrete guidance support.

4.1. Project management

Agile software development methods differ to a large
degree in the way they cover project management
(uppermost bar in Figure 2). Currently, AM and PP do not
address the managerial perspective. XP has recently been
supplemented with some guidelines on project
management [47], but it still does not offer a
comprehensive project management view. Scrum, on the
other hand, is explicitly intended for the purpose of
managing agile software development projects. Thus,
Schwaber and Beedle [32] suggest the use of other
methods to complement a Scrum based software
development approach, naming XP as one alternative.

The approach promoted by ASD is the adaptive
(leadership-collaboration) management model [11]. The
point of view in ASD is on changing the software
development culture, essentially stating that management
will also have to bend in response to changes in projects.
FDD offers means for planning projects by product
features, and tracking the projects’ progress. FDD also
believes in empowering project managers; within an FDD
project, the project manager has the ultimate say on
project scope, schedule, and staffing [21].

DSDM suggests a framework of controls to supplement
the rapid application development approach. All of these
controls are designated to increase organizational ability

to react to business changes [18], which has become
commonplace nowadays in all agile software development
approaches. Therefore, the DSDM approach towards
project management is largely about facilitating the work
of the development teams, with daily tracking of the
project’s progress. Crystal’s solution to project
management focuses on increasing the ability to choose
the correct method for the purpose [16].

4.2. Software development life-cycle

Figure 2 shows that different agile methods are focused
on different aspects of the software development life-
cycle. DSDM is an independent method in the sense that
it attempts to provide complete support over all life-cycle
phases. The Internet-speed development approach also
addresses all the phases of the software development life-
cycle but only at a managerial level. Others are more
focused. ASD covers all other phases expect for project
inception, acceptance test and system in use. AM aims at
providing modeling support for requirements specification
and design phases.

The Crystal family covers the phases from design to
integration test. XP, PP, FDD and Scrum are focused on
requirements specification, design, implementation (except
for Scrum) and testing up until the system test.

Copyright 2003 IEEE. Published in the Proceedings of the International Conference on Software Engineering, May 3-5, 2003, Portland,
Oregon, USA.

From the process perspective, AM, ISD, Scrum (for the
implementation part) and PP approaches do not emphasize
(or have not described) the process through which the
software development proceeds. AM and PP are
supplements to other methods. Thus, in the case of AM
and PP the lack of a process perspective seems
reasonable. However, ISD lacks clarity in this regard. In
the other agile software development methods (i.e., ASD,
Crystal, DSDM, XP, FDD and Scrum), the development
process has been described.

4.3. Abstract principles vs. concrete guidance

The lowest bar in Figure 2 indicates whether the
method relies on concrete guidance (gray color) or on
abstract principles (white color).

A method that is useful and efficient should not refer to
abstract principles only in forming the core of the method
[39]. It is claimed that abstract principles are useless if not
supported with concrete guidance [48]. Concrete
guidance, in this context, refers to practices, activities and
work products that characterize and provide guidance on
how a specific task can be executed. For example, FDD
lays down eight practices that “must” be used if
compliance with the FDD development rules is to be
valued [21]. They continue that the “team is allowed to
adapt them according to their experience level”. Especially,
in the case of these “must” practices, concrete guidance
should be provided how, in practice, this adaptation can
be executed. If such guidance is missing (as it is, in this
case), we interpret it as a reliance to abstract principles.

Based on this distinction, it was found that five out of
nine agile software development methods included in the
analysis place emphasis on abstract principles over
concrete guidance. ASD is more about concepts and
culture than software practice. Crystal, depending on the
system criticality and project size, mandates certain
practices but does not provide any guidance on how to
execute them. DSDM states that due to the fact that each
organization is different no practices are detailed [18].
Instead, organizations should develop the practices
themselves. Concrete guidance on how this should be
done, is not provided. Internet-speed development
establishes certain practices or principles that should be in
place. However, it does not offer any concrete guidance
on how one should actually carry out the ideas of e.g.
“always analysis” or “dynamic requirements negotiation”.

AM, XP and PP have been directly derived from
practical settings. Their purpose and goal is to feed
collected “best practices” back into the actual practice of
software development. Hence, these three methods are
strong in their focus on concrete guidance. Whether the
guidance they offer, however, is of value and correct falls

beyond the scope of this paper (whether the guidance is
supported by empirical evidence is , however, analyzed in
section 4.5). Scrum defines the practices and offers
guidance for the requirements specification phase as well
as the integration testing phase. Implementation phases,
as stated earlier, are not a part of the method.

4.4. Universally predefined vs. situation
appropriate

The goal of agile software development is to increase
the ability to react and respond to changing business,
customer and technological needs at all organizational
levels . Agile software development methods are used in a
hope of nearing toward this goal. While agility refers to
nimbleness, a method aiding this process needs to be
nimble as well. In other words, in order to increase the
level of agility, the tools (i.e., agile software development
methods) used in the development process need to be
agile also, i.e. situation appropriate. Situation appropriate
therefore means that a method can be adjusted to different
situations. A method should be flexible enough to enable
adjustments to be made on-the-fly, i.e. whenever the
situation calls for an adjustment. A universally predefined
viewpoint proposes one ready-made solution to all agile
software development endeavors.

Table 2 presents the results of the analysis regarding
situation appropriateness and empirical evidence. The
results are shown here using the following scale:

+ Situation appropriate, adjustable
– Universally predefined solutions, not adjustable
Empirical evidence will be discussed in the next

subsection. Here, the following scale is used:
+ Some empirical evidence exists
– No empirical evidence exists

Table 2. Situation appropriateness and empirical
evidence

Perspective: Situation
appropriateness

Empirical
evidence

ASD + -
AM + -
Crystal - -
DSDM + -
XP + +
FDD - -
Internet speed + +
PP + -
SCRUM + +

Copyright 2003 IEEE. Published in the Proceedings of the International Conference on Software Engineering, May 3-5, 2003, Portland,
Oregon, USA.

Cockburn’s [16] Crystal family of methodologies
explicitly provides criteria on how to select the
methodology for a project. The selection is made based on
project size, criticality and priority [49]. Based on these
factors a decision is made about which methodology
should be used. However, when the project is underway
the situation appropriateness is diminished. This
interpretation is based on the fact that Crystal methods
offer prescriptive guidance. This means that Crystal e.g.
enforces certain rules such as “the projects always use
incremental development cycles with a maximum increment
length of four months” Thus, the adjustment is made by
choosing one of the several “universal solutions” such as
Crystal Clear or other.

The analysis shows further that FDD also has goals
that are grounded on imperatives or prescriptive guidance
similar to Crystal. Palmer and Felsing [21, p. 35] explain
that FDD is “built around a core set of ‘best practices’.”
All of these practices must be used in order to “get the full
benefit that occurs by using the whole FDD process”.
FDD is claimed to suit for “any software development
organization that needs to deliver quality, business-critical
software systems on time.” [21, p. xxiii]. Thus, FDD,
Crystal and DSDM all represent universal prescriptions
that claim to have the suitability for all agile software
development situations, scopes and projects.

The DSDM Consortium [17] has published a method
suitability filter in which three areas are covered: business,
systems and technical [18]. The filter involves a series of
questions such as “Are the requirements flexible and only
specified at a high level?” or “Is functionality going to be
reasonably visible at the user interface?” and some
rationalization about which type of an answer would yield
greater benefits if DSDM were to be applied. While the
method filter is predominantly about deciding whether the
method itself is applicable or not, a recent study [50]
showed how the DSDM was tailored in a CMM context to
a project’s purposes, implying the necessary situation
appropriate characteristics.

Further, the ASD, AM, XP, ISD, PP and Scrum
approaches allow situation appropriate modifications. For
example, regarding XP Beck [5, p.77] suggests: "If you
want to try XP, … don't try to swallow it all at once. Pick
the worst problem in your current process and try solving
it the XP way." Beck maintains is that there is no process
that fits every project as such, but rather the practices
should be tailored to suit the needs of individual projects.
We interpret this in such a way that the number of
adjustments is not limited. One of XP’s practices, namely
“just rules”, implies that while the rules are followed, they
can be changed if a mutual understanding among the
development team is achieved. This implies that XP
supports situation appropriateness.

AM and PP offer supplemental practices and concrete
guidance on how and when to apply them in actual
software development work. Their authors describe the
situations and rationale for applying the practices
suggested but refrain from offering prescriptive guidance.
4.5. Empirical evidence

This viewpoint explores what, if any, empirical support
the different agile software development methods have.
Table 2 presents the results of the analysis regarding the
empirical evidence (right column).

While ASD, Crystal, FDD and Scrum are derived from
subjective practical experience, the way they were
developed is not based on reliable and systematic
research. Thus their solutions lack real empirical support.
AM and PP do not offer empirical support for their
suggestions, either. Regarding Scrum, Schwaber and
Beedle [32, p.31] claim e.g., that “[Scrum] practices have
been established through thousands of Scrum projects”.
None of these projects are cited however, which invites
skepticism regarding the validity of the empirical evidence.
More recently, however, a study [51] can be found where
Scrum was tested in real-life projects, thus showing that
the body of needed industrial evidence is gradually
growing, and that Scrum has some empirical support.

Internet-speed development has a degree of empirical
support. It is based on qualitative case studies in nine
companies [23]. We see that these cases are aimed at
increasing our understanding of how Interned-speed
companies survived, not proposing “laws” for making
successful agile SW development.

XP is not based on systematic research but rather on
the expertise and experiences of a few individual software
engineers. However, parts of XP have been studied
empirically. For example, empirical studies exist on pair
programming [52, 53]. Maurer and Martel [54] include
some concrete numbers regarding the productivity gains
using XP in a web development project. Furthermore, there
are some experience reports available of applying XP in
industrial [e.g., 55-57] and university [e.g., 9, 58] settings.
These studies provide the necessary insight on the
possibilities and restrictions of XP.

DSDM has been developed by a dedicated consortium.
Stapleton (1997) claims that empirical evidence exists in
the form of experience reports (i.e., white papers) that are
shared with the members of the consortium. However,
since they are not made publicly available we interpret that
the claims of DSDM are not empirically supported.

5. Discussion

In this section, the results of the comparative analysis
are discussed. The purpose is to identify the principal
implications for research and practice in the field of

Copyright 2003 IEEE. Published in the Proceedings of the International Conference on Software Engineering, May 3-5, 2003, Portland,
Oregon, USA.

software engineering. Table 3 summarizes these
implications.

Table 3. Results and implications of the study

Perspective Description of the
results

Implications

Software
developmen
t life-cycle

Methods, without
rationalization,
cover different
phases of the life-
cycle.

Life-cycle coverage
needs to be explained
and interfaces with
phases not covered
need to be clarified.

Project
management

While most
methods appear to
cover project
management, true
support is
missing.

Conceptual
harmonization is
needed. Project
management can not
be neglected.

Abstract
principles
vs. concrete
guidance

Abstract
principles
dominate the
method literature
and developers’
minds.

Emphasis should be
placed on enabling
practitioners to utilize
the suggestions
made.

Universally
predefined
vs. situation
appropriate

Universal
solutions
dominate the
literature.

More work on how to
adopt agile methods
in different
development
situations is needed.

Empirical
support

Empirical evidence
is limited; most of
the research is at
conceptual level

More empirical,
situation-specific,
experimental work is
needed; results need
to be publicly
available.

Software development life-cycle: Different agile
methods cover different phases of the software
development life-cycle. The rationalization of phases
covered was, however, missing. The question that must,
therefore, be raised is whether it is more profitable to cover
more and to be more extensive, or cover less and to be
more precise. Completeness, a notion introduced by
Kumar and Welke [37], requires that a method is complete
as opposed to partial. In the analysis it was realized that
“completeness” is an element that must be associated
both with vertical (i.e., level of detail) and horizontal (i.e.,
life-cycle coverage) dimensions. None of the methods
evaluated were either extensive or precise. The
practitioners, currently, have partial solutions to problems
that cover a wider area than the methods do. It is
suggested that method developers concentrate more on
specialization than generalization in the areas of their
expertise. On one hand, methods that cover too much

ground, i.e. all organizations, phases and situations, are
too general or shallow to be used. On the other hand,
methods that cover too little (e.g., one phase) may be too
restricted or lack a connection to other methods.

Project management: Software engineering is a
practically oriented field. Yet, while most (i.e., five out of
nine) agile methods do incorporate support for project
management, true support is scarce. Considering this
perspective from a method feasibility point of view,
efficient project management is of utmost importance
when agile principles such as daily builds, short release-
cycles, etc. are followed. Moreover, and more importantly,
the concepts of, e.g., release and daily builds differ from
one method to another. This invites more confusion than
clarity. It appears that the method developers are aiming
for their niche by using purposefully differing
terminology. Practitioners, especially project managers, are
in a difficult position when a decision of the most suitable
approach should be made. The operational success of any
method lies on its ability to be incorporated in the
software project’s daily rhythm. We, thus, maintain that
project management considerations need to be addressed
explicitly to ensure the alignment between a developer and
the project management.

Abstract principles vs. concrete guidance: Only three
out of nine agile methods offer concrete guidance.
Abstract principles appear to dominate the agile method
literature and developers’ minds. The agile community is
more concerned about getting acceptance to proposed
values than in offering guidance on how to use the
operative versions of these values. Currently, concrete
guidance exists mostly in methods that are very limited in
their scope (i.e., AM) or depth (i.e., PP). More work is
needed in determining how the claimed practices, activities
and work products are made to operate in different
organizations and situations so that practitioners have a
solid base on which to constitute their decisions.

Universally predefined vs. situation appropriate:
Some of the well-known agile methods (e.g., FDD) were
found to be universally predefined. Nevertheless, the few
methods (e.g., Crystal) that recognize the fact that “one
size does not fit to all situations”, still do not expound any
guidance on how this fitting process may be done. This
being the case, forthcoming methods and studies should
pay particular attention to situation appropriateness, and
offer guidance on how the methods should be used in
different agile software development situations. This also
requires the ability to identify the particular situations in
which these fitting or adjustment activities need to be
done.

Empirical support: Empirical evidence, based on
rigorous research, is scarce. Only three out of nine
methods have some empirical support for their claims. Yet,
it should be noted that some of the methods (e.g., XP) are

Copyright 2003 IEEE. Published in the Proceedings of the International Conference on Software Engineering, May 3-5, 2003, Portland,
Oregon, USA.

increasingly producing more and more empirical studies,
which is bound to mature the methodological base. Lack
of empirical evidence results in practitioners not having
reliable evidence on the real usability and the
effectiveness of particular methods. They do not know
whether the existing methods really make sense – do the
methods describe proven wisdom or folktales. As for
researchers and method developers, the lack of empirical
evidence does not help in establishing a reliable and
cumulative research tradition. Currently, researchers do
not have access to reliable evidence on existing works.
Such information is, however, necessary in pondering
which parts of the previous works have a truth in them,
and to decide to which extent future research can be based
on existing wisdom. Thus, more empirical work is needed
to study the implications of the different agile methods in
different organizations and situations. Also, it should be
noted that empirical evidence – that is, if it exists – should
be publicly accessible. Currently, empirical studies on
DSDM are made available only to members of the
consortium.

Empirical works that study the effects of particular
methods, their ease of use, costs, and possible negative
implications for different sizes and lines of business, are
needed in particular. The empirical work should use both
qualitative and quantitative research methods to study
these issues.

6. Conclusions

Agile software development methods have evoked a
substantial amount of literature and debates. However,
academic research on the subject is still scarce, as most
existing publications are written by practitioners or
consultants. Yet, many organizations are considering to
use or have already applied practices that are claimed to
make their way of performing and delivering software more
agile.

The aim of this paper is to attempt to make sense out of
the jungle of emerged agile software development
methods. Based on the result of the analysis, practitioners
are in a better position to understand the various
properties of each method and make their judgment in a
more informed way. The approach chosen for the purpose
was that of comparative analysis . The analytical lenses
included five perspectives: software development life-
cycle including the process aspect, project management,
abstract principles vs. concrete guidance, universally
predefined vs. situation appropriate, and empirical
evidence.

We observed that methods, without rationalization,
cover certain/different phases of the life-cycle. A majority
of them did not provide true support for project

management, and abstract principles appeared to dominate
the current method literature and developers’ minds.
While universal solutions have a strong support in the
respective literature, empirical evidence is currently very
limited.

Based on the above, new directions were offered.
Namely, it was suggested that emerging new agile
methods need to clarify their range of applicability and
explain the interfaces to those parts of the software
development life-cycle which are not a part of the chosen
focus. In addition it was suggested that emphasis should
rather be placed on method specialization than
generalization. However, this specialization should
enhance the conceptual harmonization rather than to work
against it. Furthermore, the project management
perspective cannot be neglected, if a method is to
encroach on day-to-day software development practices.
Emphasis should also be placed on enabling practitioners
to utilize the suggestions made. This requires placing the
focus in method development on empirically validated
situation-specific solutions.

The current trend on agile methods has focused on
fabricating a pile of conceptual methods. Instead of
hurrying to introduce yet more agile methods, the method
developers should pay particular attention to address the
problems described. The field is crying for sound
methods, i.e. methodological quality - not method
quantity.

7. References

[1] J. Highsmith, "The great methodologies debate: Part
2," Cutter IT Journal, vol. 15, 2002.

[2] J. Highsmith, "The great methodologies debate: Part
1," Cutter IT Journal, vol. 14, 2001.

[3] E. Yourdon, "Light methodologies," Cutter IT
Journal, vol. 13, 2000.

[4] R. McCauley, "Agile Development Methods Poised
to Upset Status Quo," SIGCSE Bulletin, vol. 33, pp.
14 - 15, 2001.

[5] K. Beck, "Embracing Change With Extreme
Programming," IEEE Computer, vol. 32, pp. 70-77,
1999.

[6] J. Highsmith and A. Cockburn, "Agile Software
Development: The Business of Innovation,"
Computer, vol. 34, pp. 120-122, 2001.

[7] B. Boehm, "Get Ready For The Agile Methods, With
Care," Computer, vol. 35, pp. 64-69, 2002.

[8] M. Fowler and J. Highsmith, "Agile methodologists
agree on something," Software Development, vol. 9,
pp. 28-32, 2001.

[9] M. M. Müller and W. F. Tichy, "Case Study: Extreme
Programming in a University Environment,"

Copyright 2003 IEEE. Published in the Proceedings of the International Conference on Software Engineering, May 3-5, 2003, Portland,
Oregon, USA.

presented at 23rd International Conference on
Software Engineering, Toronto, 2001.

[10] P. Abrahamsson, O. Salo, J. Ronkainen, and J.
Warsta, Agile software development methods:
Review and Analysis. Espoo, Finland: Technical
Research Centre of Finland, VTT Publications 478,
Available online:
http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf,
2002.

[11] J. A. Highsmith, Adaptive Software Development: A
Collaborative Approach to Managing Complex
Systems. New York, NY: Dorset House Publishing,
2000.

[12] S. Bayer and J. Highsmith, "RADical software
development," American Programmer, vol. 7, pp. 35-
42, 1994.

[13] S. Ambler, Agile Modeling: Effective Practices for
Extreme Programming and the Unified Process. New
York: John Wiley & Sons, Inc. New York, 2002.

[14] A. Cockburn, Surviving Object-Oriented Projects: A
Manager's Guide, vol. 5: Addison Wesley Longman,
1998.

[15] A. Cockburn, Writing Effective Use Cases, The
Crystal Collection for Software Professionals:
Addison-Wesley Professional, 2000.

[16] A. Cockburn, Agile Software Development. Boston:
Addison-Wesley, 2002.

[17] DSDMConsortium, Dynamic Systems Development
Method, version 3. Ashford, Eng.: DSDM
Consortium, 1997.

[18] J. Stapleton, Dynamic systems development method -
The method in practice: Addison Wesley, 1997.

[19] K. Beck, Extreme programming explained. Reading,
Mass.: Addison-Wesley, 1999.

[20] K. Beck, Extreme Programming Explained: Embrace
Change, 2000.

[21] S. R. Palmer and J. M. Felsing, A Practical Guide to
Feature-Driven Development, 2002.

[22] P. Coad, E. LeFebvre, and J. De Luca, Java Modeling
In Color With UML: Enterprise Components and
Process: Prentice Hall, 2000.

[23] R. Baskerville, L. Levine, J. Pries-Heje, B. Ramesh,
and S. Slaughter, "How Internet companies negotiate
quality," IEEE Computer, vol. 34, pp. 51-57, 2001.

[24] R. Baskerville and J. Pries-Heje, "Racing the E-bomb:
How the Internet is redefining information systems
development methodology," in Realigning research
and practice in IS development, B. Fitzgerald, N.
Russo, and J. DeGross, Eds. New York: Kluwer, 2001,
pp. 49-68.

[25] M. A. Cusumano and D. B. Yoffie, "Software
development on Internet time," IEEE Computer, vol.
32, pp. 60-69, 1999.

[26] M. A. Cusumano and R. W. Selby, "How Microsoft
builds software," Communications of the ACM, vol.
40, pp. 53-61, 1997.

[27] D. P. Truex, R. Baskerville, and H. Klein, "Growing
systems in emergent organizations,"
Communications of the ACM, vol. 42, pp. 117-123,
1999.

[28] R. Baskerville, J. Travis, and D. P. Truex, "Systems
without method: The impact of new technologies on
information systems development projects," in
Transactions on the impact of computer supported
technologies in information systems development, K.
E. Kendall, K. Lyytinen, and J. I. DeGross, Eds.
Amsterdam: Elsevier Science Publications, 1992, pp.
241-260.

[29] D. P. Truex, R. Baskerville, and J. Travis,
"Amethodological systems development: The
deferred meaning of systems development methods,"
Accounting, Management and Information
Technology, vol. 10, pp. 53-79, 2001.

[30] A. Hunt, Thomas, D., The Pragmatic Programmer:
Addison Wesley, 2000.

[31] K. Schwaber, "Scrum Development Process,"
presented at OOPSLA'95 Workshop on Business
Object Design and Implementation, 1995.

[32] K. Schwaber and M. Beedle, Agile Software
Development With Scrum. Upper Saddle River, NJ:
Prentice-Hall, 2002.

[33] J. Iivari and R. Hirscheim, "Analyzing information
systems development: A comparison and analysis of
eight IS development approaches," Information
Systems, vol. 21, pp. 551-575, 1996.

[34] T. W. Olle, H. G. Sol, and A. Verrijn-Stuart,
Information systems design methodologies: A
comparative review. Amsterdam: North-Holland,
1982.

[35] B. W. Boehm, "A spiral model of sofware
development and enhancement," IEEE Computer,
vol. 21, pp. 61-72, 1988.

[36] G. Cugola and C. Ghezzi, "Software Processes: a
Retrospective and a Path to the Future," Software
Process Improvement and Practice, vol. 4, pp. 101-
123, 1998.

[37] K. Kumar and R. J. Welke, "Methodology
engineering: A proposal for situation-specific
methodology construction," in Challenges and
strategies for research in systems development, W.
W. Cotterman and J. A. Senn, Eds. New York: John
Wiley & Sons, 1992, pp. 257-269.

[38] T. Gilb, Principles of Software Engineering
Management. Wokingham, UK: Addison-Wesley,
1988.

[39] J. Nandhakumar and J. Avison, "The fiction of
methodological development: a field study of

Copyright 2003 IEEE. Published in the Proceedings of the International Conference on Software Engineering, May 3-5, 2003, Portland,
Oregon, USA.

information systems development," Information
Technology & People, vol. 12, pp. 176-191, 1999.

[40] V. R. Basili and F. Lanubile, "Building knowledge
through families of experiments," IEEE Transactions
on Software Engineering, vol. 25, pp. 456-473, 1999.

[41] V. R. Basili, "The role of experimentation in software
engineering: Past, present and future," presented at
Keynote address in 18th International Conference on
Software Engineering (ICSE18), Berlin, Germany,
1996.

[42] N. Fenton, "Viewpoint Article: Conducting and
presenting empirical software engineering,"
Empirical Software Engineering, vol. 6, pp. 195-200,
2001.

[43] I. Sommerville, Software engineering, Fifth ed. New
York: Addison-Wesley, 1996.

[44] D. G. Wastell, "The fetish of technique: methodology
as a social defence," Information Systems Journal,
vol. 6, pp. 25-49, 1996.

[45] J. L. Malouin and M. Landry, "The miracle of
universal methods in systems design," Journal of
Applied Systems Analysis, vol. 10, pp. 47-62, 1983.

[46] A. F. Chalmers, What is this thing called Science?,
Third ed. Buckingham: Open University Press, 1999.

[47] R. Jeffries, A. Anderson, and C. Hendrickson,
Extreme Programming Installed. Upper Saddle
River, NJ: Addison-Wesley, 2001.

[48] D. Fiery, Secrets of a super hacker. Port Townsend,
Washington, USA: Loompanics Unlimited, 1994.

[49] A. Cockburn, "Selecting a project's methodology,"
IEEE Software, vol. 17, pp. 64-71, 2000.

[50] M. N. Aydin and F. Harmsen, "Making a method
work for a project situation in the context of CMM,"
presented at Product Focused Software Process
Improvement (Profes 2002), Rovaniemi, Finland, 2002.

[51] L. Rising and N. S. Janoff, "The Scrum software
development process for small teams," IEEE
Software, vol. 17, pp. 26-32, 2000.

[52] L. Williams, R. R. Kessler, W. Cunningham, and R.
Jeffries, "Strengthening the Case for Pair
Programming," IEEE Software, vol. 17, pp. 19-25,
2000.

[53] J. Haungs, "Pair programming on the C3 project,"
Computer, vol. 34, pp. 118-119, 2001.

[54] F. Maurer and S. Martel, "On the Productivity of
Agile Software Practices: An Industrial Case Study,"
2002.

[55] J. Grenning, "Extreme Programming and Embedded
Software Development," presented at Embedded
Systems Conference 2002, Chicago, 2002.

[56] P. Schuh, "Recovery, Redemption, and Extreme
Programming," IEEE Software, vol. 18, pp. 34-41,
2001.

[57] A. Anderson, R. Beattie, K. Beck, D. Bryant, M.
DeArment, et al., "Chrysler Goes to "Extremes".
Case Study.," Distributed Computing, pp. 24-28,
1998.

[58] J. R. Nawrocki, B. Walter, and A. Wojciechowski,
"Comparison of CMM level 2 and eXtreme
programming," presented at 7th European
Conference on Software Quality, Helsinki, Finland,
2002.

