
Cost Estimation Tutorial

Cost is s strategic concept in software development for the following reasons:

1- Project management: Estimating cost is extremely crucial in carrying out project
management activities such as scheduling, planning and control.

2- Feasibility Study: Making investment decisions regarding software projects requires
full cost breakdown and analysis .Consequently, identified recurring and one time
costs are then incorporated in a financial feasibility study in terms of cost-benefit
analysis.

3- Cost reduction: Since software engineering aims to provide cost-effective software
solutions to business problems, many process and project related activities are designed
or re-engineered to achieve the goal of cost minimization.

4- Evaluating business performance: Cost is an essential ingredient to calculate many of
the financial ratios – explained above- uses to evaluate the financial performance for
business firm

5- Leverage: Cost plays a significant role in both e the operating and the financial
leverage in respect of risk and return. Relying on fixed costs as opposed to variable
costs can boost the operating leverage while financing with high percentage on debt-
based costs may boost the financial leverage.

Cost Estimation

 Every year more projects are doomed by poor cost and schedule estimates than by technical,
political or organizational problems. It’s no wonder that so few companies realize that software
cost estimating can be a science, not just an art. It has been proven that it is quite applicable to
accurately and consistently predict development life cycle costs and schedules for a broad array
of software projects.
 Though a vast body of knowledge exists today in respect to cost estimation techniques, most
of these estimation techniques view cost as a function of complexity whether explicitly or
implicitly. In early models, complexity means the project size or the program volume, which
can be estimated merely via kilo lines of codes KSLOC. In late models, complexity is
determined firstly by inputs, outputs, interfaces, files and queries that the software system
needs. Then this complexity is further adjusted via up to 14 different added-complexity factors.
Eventually, the final result is converted, through a standard conversion table to KLOC.
 In basic cost estimation model the calculation is straightforward. By determining the value
of only two variables, total efforts in person-months can be easily calculated. These two
variables are :

q How many thousands of lines of code (KSLOC) your programmers must develop?
q The effort required per KSLOC (i.e.: Linear Productivity Factor)

Accordingly, multiplying these two variables together will result in the person months of effort
required for the project provided that the project is relatively small. Otherwise, another
exponential size penalty factor has to be incorporated for larger project sizes. Person-months
implies the number of months required to complete the entire project if only one person was to
carry out this mission. This underlying concept is the foundation of all of the software cost
estimating models especially those originated from Barry Boehm’s famous COCOMO models.

COCOMO Sample Example

Suppose it is required to build a Web Development system consisting of 25,000 lines of code.
How many person months of effort would this take using just this equation if:

1- The project size was relatively small
2- The project size was considered large

Answer:

1- For a relatively small project:

Efforts = Productivity x KSLOC

 = 3.3 x 25 = 82.5 Person-Months

2- For a large project :

Efforts = Productivity x KSLOCPenalty

 = 3.3 x 251.030 = 90.86 Person-Months

It should be noted , however . that COCOMO formulas have also different modes , models
and versions up to COCOMOII and the new COCOTS.

Estimating software costs typically involves the following drivers:

1- Complexity of the software project
2- Size of the software project
3- Efforts needed to complete the project
4- Time needed to complete the project
5- Risks and uncertainties involved .Yet , the risk driver is still not clearly incorporated in

the majority of cost estimation models for software systems .

Despite of several differences, most cost estimation models are more or less based on the
following rule:

Complexityà size
(Complexity determines software size in terms of KLOC)

Size à efforts
(KLOC determines efforts in person-months with a given level of productivity and exponential
size penalty factor)

Effortsà time
(Effort determines time at a given mode and/or model)

Timeà Number of people required
(Time determines people “well-trained full time software development team”)

Four standard conversion tables are widely adopted in cost estimation. These tables are shown
below.

Table 1. Common Values for the Linear Productivity Factor

Project Type Linear Productivity Factor

COCOMO II Default 2.94

Embedded Development 2.58

E-commerce Development 3.60

Web Development 3.30

Military Development 2.77

Table 2. Typical Size Penalty Factors for Various Project Types

Project Type Exponential Size Penalty
Factor

COCOMO II Default 1.052

Embedded development 1.110

E-Commerce development 1.030

Web development 1.030

Military development 1.072

Table 3-a Factors for Converting Raw Values to Function
Points

Complexity

Description Low Medium High Total

Inputs __x 3 __x 4 __x 6 ____

Outputs __x 4 __x 5 __x 7 ____

Queries __x 3 __x 4 __x 6 ____

Files __x 7 __x 10 __x 15 ____

Program __x 5 __x 7 __x 10 ____
Interfaces

 TOTAL UNADJUSTED FUNCTION POINTS ____

Table 3-b Complexity Factors

Scale of 1 to 5

Data Communications _____
Heavy Use Configuration _____
Transaction Rate _____
End-User efficiency _____
Complex Processing _____
Installation Ease _____
Multiple sites _____
Performance _____
Distributed functions _____
On-line data entry _____
On-line update _____
Reusability _____
Operational Ease _____
Extensibility _____

Project Complexity (PC) _____

Table 4. Lines of Code Per Function Point by Programming Language

Language SLOC per Function Point

C++ default 53

Cobol default 107

Delphi 5 18

HTML 4 14

Visual Basic 6 24

SQL default 13

Java 2 default 46

C 130

Turbo Pascal 50

Power Builder 15

Packages 10-40

• Function Points Estimations

 An alternative to direct KSLOC estimating is through function points, then use a the above
standard table called “Lines of Code Per Function Point by Programming Language” to
convert them to KSLOC. Function points was used for the first time by IBM to capture the
complexity of the software system in terms of its SRS functionality and the way it interacts
with its users.

How Function Points Work?

1- Estimate the number of external inputs, external interface files, external outputs,
external queries and logical internal tables (files).

2- Use the Function Point Conversion Factor table to get total initial function points .

3- Initial function points are adjusted via 14 complexity factors to obtain final (adjusted)
function points.

4- Use adjusted function points to obtain KSLOC.

5- Use KSLOC to estimate efforts as explained in COCOMO examples above

FP Sample Example

 Suppose the requirement specification for the Blood Bank Website Development of the
blood bank project has been carefully analyzed and the following estimates have been
obtained. There is a need for 11 inputs, 11 outputs, 7 inquiries, 22 files, and 6 external
interfaces. Also, assume outputs, queries , files function point attributes are of low
complexity and all other function points attributes are of medium complexity.
 The complexity adjustment value for factor 1 is set to 3 because the SRS requires that the
software product has only a good degree of data communication; factor 2 is set to 0 because the
SRS emphasizes no need for heavy use configuration; factor 5 is set to 3 because the order-
web-based order fulfillment module has medium level of complex processing; factors 10 and
11 are set to 4 and 2 respectively because the module is always on-line but needs only few
updates ; factor 3, 4 6,7,8,9,12,13,14 are set to 4, 3,2, 3,4,3,4,3,2 respectively based on their
estimated level of complexity or demand..

Make the following calculations showing the full procedure in details:

1- What is the FUNCTION POINTS (FP) for the blood bank project
2- What is the ADJUSTED FUNCTION POINTS (AFP) for the blood bank project?
3- What is the approximate number of LOC in the following languages:

• “C++” programming language
• “Java” Programming language

4- Calculate the estimated schedule time in person-months assuming that Java is used as
the implementation language

5- Use COCOMO Model to directly estimate efforts and time without using function
points ?

Answer

1- Calculating Function Points

FUNCTION POINTS ESTIMATION (1)
DESCRIPTION LOW MEDIUM HIGH TOTAL
INPUTS X3 11X4 X6 44
OUTPUTS 11X4 X5 X7 44
QUERIES 7X3 X4 X6 21
FILES 22X7 X10 X15 154
PROGRAM INTERFACES X5 6X7 X10 42

Total Unadjusted Function
Points 305

2- Calculating Adjusted Function Points

FUNCTION POINTS ESTIMATION (2)
DATA COMMUNICATIONS 3
HEAVY USE CONFIGURATION 0
TRANSACTION RATE 4
END-USER EFFICIENCY 3
COMPLEX PROCESSING 3
INSTALLATIOIN EASE 2
MULTIPLE SITES 3
PERFORMANCE 4
DISTRIBUTED FUNCTIONS 3
ON-LINE DATA ENTRY 4
ON-LINE UPDATE 2
REUSABILITY 4
OPERATIONAL EASE 3
EXTENSIBILITY 2
PROJECT COMPLEXITY (PC) 40

FUNCTION POINT ESTIMATION (3)
PROCESSING COMPLEXITY(PC): 40
ADJUSTED PROCESSING COMPLEXITY (PCA) 0.65+(0.01 *40)= 1.05
TOTAL ADJUSTED FUNCTION POINTS 305 * 1.05 = 320.25

3- Approximate number of LOC for the following languages:

• “C++” programming language :

 LOC = 320.25 x 53 = 16973.25 ~ 17 KSLOC

• “Java” Programming language

 LOC = 320.25 x 46 = 14731.50 ~ 14.7 KSLOC

4- Estimated efforts calculation

 Efforts = Productivity x KSLOCPenalty

= 3.3 x 14.71.030 = 52.58 Person-Months

5- Using COCOMO Model to directly estimate efforts and time without using
function points

We are going to use the Intermediate COCOMO and Semi-Detached mode for this example

Estimated
KSLOC New KSLOC Function/Module name

5.5 5.5 General/Donor Website Development
8.5 8.5 Internal/Blood Bank Website Development
3.0 3.0 Blood Requestor Website Development
4.5 4.5 Web security
4.5 4.5 Reporting tools
3.0 3.0 Fault tolerance

29.0 29.0
Total Project for Web Development

Comments = (1/5) * New KSLOC * 20%
 = (1/5) * 29000 * 0.2
 = 1160

Total KSLOC = New KSLOC + Comments
 = 29000 + 1160
 =30160

≈30 KSLOC

LM = 3.0 * (KSLOC)^1.12
 = 3.0 * (30)^1.12

≈135 Labor Month

DT = 2.5 * (LM)^0.35
 = 2.5 * (135)^0.35

≈ 14 Calendar Month

LM: Labor Month
DT: Development Time

