
1.1.1 Function Point Analysis
1.1.1.1 Inputs

The inputs for our project come from the graphical user interface and the

communicator daemon. In the GUI, we have five tabs and a services tree that

we use. The services tree is of high complexity because it dynamically changes

to tell the state of your current services. The ``Application'' tab is of low

complexity as it merely serves as an application manager for the service

modules. Internal to that are the application modules, which we will state have a

medium level of complexity, as they must take into consideration much more

configurations that are individually tailored to specific modules. The ``IP'' tab is

of low complexity because most all you should have to do is input the desired IP

address. The ``User'' tab is of medium complexity as it is used to configure the

passwords and options for all user accounts. The ``Status'' tab gives you log

output from various applications and statistics from the operating system, hence

it is of medium complexity. As a whole, the Java GUI has two TCP interfaces,

one with another computer's GUI interface, and one with the UNIX communicator

daemon. These are of low complexity, as it is very easy to communicate through

sockets in Java. Finally, the inputs into the UNIX communicator are of medium

complexity due to the nature of the development platform. In total, that tallies as

nine separate inputs, one of high complexity, four of medium complexity, and four

of low complexity.

1.1.1.2 Outputs

 We have six main outputs that our project uses. We output to our own

log, our ``Status'' tab, our services tree, and our three TCP interfaces. The log

should be of low complexity as it would just be a file that we append simple

messages to. The ``Status'' tab will be a medium complexity factor because

there will be a little work formatting the messages and displaying them on the

screen. The services tree will be of high complexity because it must know the

state of all running services and change dynamically as their status changes.

Finally, the TCP interfaces that interface in Java will be of low complexity and the

one in the UNIX layer will be of medium complexity, for the same reasons as

stated above. In summation, there are six outputs, one of high complexity, two of

medium complexity, and three of low complexity.

1.1.1.3 Queries
 Our project has seven queries that it will use. Basically our queries are

anything from which we can derive statistics. All of the queries are very easy to

use, due to the ease of UNIX signal calls, TCP communication in Java and UNIX,

and the ease of reading files. Therefore all of our queries are of low complexity.

We can get the storage space available, CPU utilization, memory utilization, and

network usage statistics from the OS layer via the proc file system. We can use

Unix signals to determine information about the state of our running application

services. We can also use TCP to communicate with the lower level of our

application and with the other unit's GUI. Hence, we have a total of seven

queries of low complexity.

1.1.1.4 Files
There are approximately twenty-four files that our project is going to use.

They vary in complexity from low to high. The high complexity files are SMTP

configuration, IMAP configuration, Samba configuration, and FTP configuration.

In most cases entire open source projects have been built around configuring

these files. We realize just how complex editing these files can be, so we intend

to only change a few key attributes of each. Even with our simplified

modifications we still expect using these files to be of high complexity. Our own

configuration file for the cluster will probably be of medium complexity.

Considering we will be designing this file ourselves we will be aware of each

option and what it does. There will also be a security file of our own design. It

will be of medium complexity because it we will have to use encryption to create

the password hashes we store in the file. Finally the low complexity files are the

files we read OS information such as CPU, memory, and LAN interface usage

from which reside in the proc file system, and our own log file which we append

messages to. The remainder of the files are related to the installation package,

and these range from pictures to applications. We shall currently assume that

there will be eight files of high complexity, eight of medium complexity, and eight

of low complexity.

1.1.1.5 Interfaces
Our project has five different interfaces. Our project will have to interface

with the OS, the communicator daemon, the GUI, the application module

framework, and our configuration files. The OS interface and the application

interfaces will be handled by UNIX signals and the proc file system, hence they

are of low complexity. The LAN interfaces will also be handled through the OS

but these interfaces will be used to transfer our heartbeat and network file

mirroring information. For these reasons we have determined the LAN interfaces

to be of medium complexity. The GUI will be designed by us and should be of

medium complexity. Finally the application module framework and configuration

files will also be of low complexity, due to the strict object-oriented approach we

have taken towards our design architecture. Therefore there are two interfaces

of medium complexity and three that are of low complexity.

1.1.1.6 Function Point Diagram

Low Medium High Total

Inputs 1 Î 3 4 Î 4 4 Î 6 43

Outputs 1 Î 4 2 Î 5 3 Î 7 35

Queries 7 Î 3 0 Î 4 0 Î 6 21

Files 8 Î 7 8 Î 10 8 Î 15 256

Interfaces 3 Î 5 2 Î 7 0 Î 10 29

TOTAL 99 120 165 384

Table 1: Function point matrix

1.1.2 AFP and COCOMO Analysis
1.1.2.1 Adjustment Factors

Factor Description Influence

Backup and
Recovery

The system is a backup and recovery system,
this element is critical. 5

Data
Communications The system depends on communications. 5

Distributed
Functions

The system is a fail-over cluster. Hence,
distributed functions are not critical. 1

Performance
Performance is more of an issue for the
services (applications) that are run, but the fail-
over system cannot be a performance problem.

2

Operational
Environment The environment should be fairly generic. 1

On-line data entry
There is little data to be entered – and Java is
the planned language for the screens – so this
is of medium importance.

3

Multiple Screens
for Input

One screen with multiple tabs to simplify the
user interface. 1

On-line Update There is no data to be updated – so this is not
important. 1

Interface
Complexity

On average, this project has interfaces that are
of average complexity. 3

Re-usability The API will be designed for maximum re-
usability. 1

Process
Complexity The process is already well defined. 1

Installation Ease This is one of the key goals for the project. 5

Table 2: Function point adjustment factors

Multiple
Sites

The system will be designed so it can be installed at multiple
sites for one customer (and at multiple customers’ sites). 4

Ease of
Use This is another key goal for the project. 5

TOTAL 38

Adjusted Function Points (AFP) = 384Î (0.65 + (0.01Î 38))

AFP = 395.52

Here we use 34 as the language factor because it is the weighted average of the

languages we will be using (25% C, 5% UNIX scripts, 70% Java).

Lines of Code (LOC) = 34 Î 395.52

LOC = 13,448

Finally we use the organic model with basic COCOMO analysis as that model

best describes our project.

Labor Month (effort) = 2.4 Î ((LOC / 1000)^1.05)

Labor Month = 2.4 Î (13.448^1.05)

Labor Month = 36.7

Develop Time (schedule time) = 2.5 Î ((Labor Month)^0.38)

Develop Time = 2.5 Î (36.7)^0.38

Develop Time = 2.5 Î (3.9338)

Develop Time = 9.8

People Needed = Labor Month / Develop Time

People Needed = 36.7 / 9.8

People Needed = 4

