
LEAN SOFTWARE DEVELOPMENT IS IT FEASIBLE ?

Sowmyan Raman, The Boeing CO, Seattle, WA 98124.

ABSTRACT

The Lean Aerospace Initiative originally
began as Lean Aircraft Initiative (LAI) in the
summer of 1992 at Massachusetts Institute of
Technology (MIT). The refashioning of Lean
Aircraft Initiative to Lean Aerospace Initiative
(LAI) took place in November 1997 to reflect
the addition of Space Sector. A consortium of
Air Force and 21 defense firms including the
Boeing CO and the erstwhile McDonnell
Douglas was originally formed to investigate
how the “Lean Principles” that were applied in
the automobile industry particularly in Toyota
could be adopted in the Aerospace industry
including Electronics and Avionics segments
H I .

It is no secret that the next millennium
will be digital. Software will not only play an
important role in the Aerospace systems but
almost in every aspect of our life It is the
dream of every enterprise to have software
developed cheaper, faster, and better. During
the last several years many technologies,
methodologies and software languages and
development tools have emerged as the answers
to the above dream. We are yet to accomplish
that dream

Modern aircraft is nothing but a bunch
of “flying” computers connected together and it
is just “Electronics in motion” or flying
electronics. It is estimated that 50% of the

development costs for any modern airplane is
attributed to systems and a substantial portion
to software development.

Toyota is accepted not only as a leader
in the automobile industry but as a world class
manufacturing company which is very
successful in adopting lean principles which
they call as Toyota Production System (TPS)
[2]. This paper will briefly describe what is
“Lean Thinking” and explore the feasibility of
applying these principles to software
development. It will include discussions on the
emerging software development methods and
Capability Maturity Model (CMM)[9] of the
Software Engineering Institute (SEI) which
gives us a framework. It will attempt to answer
whether these principles of Lean can to applied
to Software Development.

What Is Lean ?

Lean is all about getting the right things
to the right place at the right time the first time
while minimizing waste and being open to
change. The production system that was
pioneered after world war II by the Toyota
company for the manufacture of automobiles
was labeled as “Lean Production” by the
authors of the landmark book: The Machine
That Changed the World [2]. This book was the
direct result of the study by The Massachusetts
Institute of Technology ‘s five million, five
year effort, on the future of The Automobile.
Lean Aircraft Initiative was formed to extend

0-7803-5086-3 /98/$10.00 01998 E E E C13-1

the Lean production paradigm and knowledge-
base from this study. A key goal was to
articulate, define and apply concepts, principles
and practices of Lean production to defense
aircraft industry initially and aerospace industry
in general latter, through quantitative bench-
marking of best industrial practices.

The word mudu a Japanese word is the
center of this whole Lean revolution. Mudu
means “waste” specifically any activity that
absorbs resources but outputs no value. Taiichi
Ohno (1912-1990) , an executive of Toyota
who developed and implemented Toyota
Production System (now known as Lean) was
horrified at different forms of mudu which
made him develop methods to eliminate them
[3]. Some of them he identified are: Mistakes
that are subsequently rectified, unwanted
production and inventory, processes which are
not really needed, unnecessary movement of
people/things, waiting, and products and
services which do not meet the needs of the
customer. Some of the above are obviously
more applicable to hardware environment
rather than software.

What are the basic concepts of Lean
Thinking. These are: Value, the Value Stream,
Flow, Pull, Perfection. Let me describe these
concepts[4].

Value: Value can only be described by
the ultimate customer. It is useful when
expressed in terms of specific product which
meets customer’s needs at a price at a specified
time. In the context of aircraft industry Phil
Condit, Chairman and CEO of The Boeing CO,
has recently said “ the fust 75 years were
defined by constant push for performance. The
aerospace industry is going to change to value
driven industry” [5]. Airlines want “value7’ as
perceived by their ultimate customers, rather
than advanced and exotic technology or super
performance.

Value Stream: is a set of actions
required to bring a value product or service to
the customer. An aerospace example would be
0-7803-5086-3 /98/$10.00 01998 IEEE C

a titanium ingot made 10 times the weight of
the finished part. By redesigning the ingot to
suit several parts , unnecessary forging and
machining that added no value were eliminated.
By making supply chain transparent to all the
players the value stream can be strengthened.

Flow: Once the unnecessary steps are
eliminated the remaining value creating steps
need to be made to flow. Instead of organizing
functionally, development or production
activities should be organized as continuous
flow with responsibilities for complete
processes or sub-processes. This type of
arrangement eliminates sub-optimization of any
functional group which does not contribute to
the ultimate output.

Pull: The production system should be
developed such that the customer pulls the
product. Every down stream process should
pull from its upstream process. This way wait
and inventory in between processes can be
avoided.

Perfection: This is a principle based on
the concept that there is no end to the process
of reducing effort, time, space, cost and
mistakes. Basically this is the Japanese concept
of Kuizen[7] or continuous improvement.
Always try to be better , cheaper and faster and
there is nothing like one has reached the
perfection.

Software Development - Today

Professor Niklaus Wirth laments that
almost all software have grown “fat”. He
contributes this tendency to growing hardware
performance and the unnecessary complexity
built in the software. Obviously “fat” software
needs “fat” software development [6].

The causes for complexity are: (1)
software vendors adopt almost any features that
users may want and (2) monolithic design with
all conceivable features. Complex problems

13-2

require complex solutions and resulting
complex and “fat” software. Complexity is also
viewed as power by many. Vendors use the
strategy of customer dependence rather than
customer education which is more profitable.

Sophisticated software are complex and
good solutions are developed by iterative and
time-consuming thought processes. In view of
time constraints software inadequacies are
corrected by quickly conceived additions
increasing the complexity and size of the
software. Prof.Wirth recommends good
engineering by gradual stepwise refinement of
the product which we understand as continuous
improvement or kaizen [7] .

Lean Thinking in Sojhare Development

Let us see whether the basic Lean
principles indicated earlier can be applied to
software development.

Value: value is what the customer
perceives as value or useful to him. In the mass
market software industry Microsoft has been
very successful. According to Michael
Cusumano, Microsoft and Bill Gates value
making money and they believe that delivering
value to the customers only will make the most
money [8]. They do not value technology for
the technology’s sake. Most of the successful
software technologies Microsoft adopted were
invented elsewhere including Windows.

There are enough stories about
completed software that were not usable by the
customers. The value for the customer from his
point of view, need to be understood at the
stage of Requirements development. SEI
Capability Maturity Model [9] includes
Requirements Management in level 2 which is
one of the early stages of Capability Maturity.
Usability by the customer is very important as
that contributes to his value.

The question that arises is how can we
extract the “value” as perceived by the
0-7803-5086-3 /98/$10.00 01998 EEE’ C

customer. Rapid Prototyping is one of the
processes that may help here. By rapidly
prototyping and reviewing with the customer
one can develop the customer’s requirements
and his value. The erstwhile McDonnell
Douglas Aerospace has used RAPIDS process
very successfully. Microsoft uses flexible
incremental approach by incrementally
changing evolving features targeting specific
customer activities and values. The “spiral”
software development model as well as
“stacked spiral model” use the concept of
prototyping [19]. One way to achieve speedy
prototyping is to use “software components”.
Object-Oriented technology plays an important
role here.

Quality Function Development (QFD)
is a team-based technique that helps in
identifying and translating customer
requirements [lo]. QFD has been used
successfully in hardware environments and its
application in software is not yet dominant.
Many defense programs like The Joint
Advanced Strike Technology is employing
QFD. QFD is based on the popular article
“House Of Quality” appeared in the Harvard
Business Review [111

First and foremost is to understand
clearly what the customer wants and what he
considers as “value”.

Value Stream: is a series of actions for
developing a value product for the customer
from order to delivery. By identifying the
stream and those activities which actually add
value, it would be possible to eliminate
activities that do not contribute any value.
Gordon Bethune the Chairman and CEO of the
Continental Airlines in his recently published
book: From Worst to First [12], cites how
even after improving the on-time arrivals of the
flights, the customer’s satisfaction was poor
due to the delays in getting their baggage. It is
important that the whole “value stream” has to
be improved to add value to the product.

113-3

In software development it is not just
enough to understand customers requirements
but is equally important that the design is
developed meticulously using good engineering
by gradual stepwise refinement of products.
Sloppy design to save time will deliver a
product with less value during the life of the
product. A good design architecture and a
Programming language based on object
oriented technology will ensure value to the
customer.

By identifying the stream and the
activities that actually add value it would be
possible to eliminate steps which do not
contribute to the value for the customer. CMM
helps in providing a framework. In SEI CMM
level 2 the emphasis is to get the processes
under control and establish repeatability. Once
the processes are defined and repeatable focus
on the process (level 3) and process
improvement (level 5) are possible. By defining
the process one can eliminate those processes
that do not add value[9]

Flow: The third concept in Lean
Thinking is Flow and we should make value
flow. Flow is to make every activity in the
product development take place continuously
with no stoppage, no back flows and no scrap.
Translating this to software development at
Microsoft would be syn-and-stabilize approach
according to Cusumano. In this approach
developers activities as individuals and as
members of teams working on different
features are continuously coordinated as
project proceeds. Microsoft people refer to this
as “nightly build” or “Zero-defect” process [SI.
The term “build” refers to integrating partially
completed or finished pieces of software during
development process to see what functions
work. This structure, while allowing people
enough flexibility to be creative and evolve
product’s details in stages, results in
coordination of individual engineers and teams.
Developers are required to test features with
customers and refine their design during

development. Scrapping of efforts can be
avoided by putting in place processes that
ensure continuous product development as
described above.

Pull: Pull is an interesting concept in
Lean. It means that no one upstream should
produce a good or service until the customer
downstream asks for it. This has been the basis
for “Just In Time” (JIT) inventory concept in a
manufacturing environment. In software
environment JIT may not be applicable but it is
needless to emphasis that only what is required
by the customer should be built in the software.
The software community has a tendency to
include features which they think are “nice” for
the customer to have. The result is “fat” and
unnecessarily complex software.

This last concept in Lean
Thinking is to continuously move towards
perfection or Kuizen. This is quite opposite to
the reengineering concept that has emerged past
few years. SEI CMM emphasizes continuously
improving the process and defect prevention as
key process areas at the highest level 5. There
are two aspects in perfection. The first is
eliminate defects while developing the product.
The second, is improve the processes so that all
“waste” can be removed. Michael Hammer the
author of “reengineering” has recently
conceded in his current book “Beyond
Reengineering” [131 that reengineering has
failed since process focus was not integrated in
the reengineering efforts. Process Management
defined as one of the Key Process Area under
SEI CMM level 5 is very essential for moving
towards perfection. By establishing appropriate
processes defects in the software development
can be avoided. Component-Based software
development enables to use already proved
components thus ensuring defect free [14].

Perfection:

0-7803-5086-3 /98/$10.00 01998 EEE C13-4

Lean Software Development

The literature survey has produced only
two articles on Lean Software Development.
The work of Alexander CHou under the
auspices of Lean Aircraft Initiative is an
exhaustive paper encompassing Lean
Hardware and Software System
Development[151. The author has described
and discussed five methodologies : (1) The
Rapid Development Process, (2) The GriTech
rapid development process, (3) Ptolemy-
supported hardware and software co-design (4)
The RASP (Rapid Prototyping of Application
Specific Signal Processors) design
methodology and (5) Clean room software
engineering. He has recommended study of
AFWA/Tri-service RASPP program, ARPA
STARS (Software Technology for Adaptable,
Reliable Systems), and F22 Avionics
development case study. Prof Wirth has argued
for Lean Software and has not discussed Lean
Software Development . He has however
recommends simple object-oriented
programming language Oberon instead of C++
which is becoming a very popular language.

Japanese Experiences

Michael Cusumano has described in
detail the Japanese experiences of improving
Software development through what he calls as
“Software Factories” [16]. Software Factory is
a concept or a philosophy that some software
can be produced in a manner more akin to
engineering and manufacturing than craft
practices. Hitachi, Toshiba, NEC, and Fujitsu
have successfully adopted this concept. So if
one accepts the Software Factory Philosophy
then application of Lean principles can also be
accepted easily.

Even though the Software Factory was

0-7803-5086-3 /98/$10.00 01998 BEE C13-5

Even though the software factory was
originally proposed in US it did not live very
long in US. However US Department Of
Defense had subsequently developed the
concept of software development “ component-
by-component” rather than “instruction-by-
instruction”. This was called “mega-
Programming” [171. Emergence of Object-
Oriented programming languages rekindled
interest in “re-use” of software components and
there is considerable interest now in the
industry for Component Based Software
Development. Software leaders like Microsoft
have developed Class libraries for object
oriented languages which promote re-use.

The “re-use’’ help in achieving in
improved quality and reduced flow time and
cost since already developed, tested and proven
components are used. Reuse is a very dominant
principle under Lean.

Japanese have been using Software
Factory concept and continuously improving
the software processes. These have helped
many Japanese companies to reach SEI CMM
level 5. Fujitsu for example has software
groups functioning at CMM level 5 and they do
certify some of their software “Zero defect”.
This is based on “perfection” principle of Lean.
Many Japanese firms attribute their higher
quality and productivity to software reuse but
they also define reuse as systematic way of
integrating components that have been certified
as “zero defect” [181.

Flexible Sofiare manufacturing

Software Factory concept introduced the
factory model to software development. Object-
Oriented technologies promoted reusability to a
great extent.

Paul Bassett comments that the most
difficult problem in software reuse is not
technical rather it is establishing a
manufacturing culture[191. The craftsman’s

mentality of distrusting what others do has been
the main source of obstacle in implementing
aggressive reuse in software development. He:
argues that to manufacture software (not
develop) managers must support development
processes, infrastructure and most importantly
culture. Development processes should include
processes for developing reusable components
and for developing systems. The infrastructure
must align with a reuse strategy. both^
execution and construction standards may be
the answers to this problem. Culture is a very
dominant in changing any processes and.
software processes are no exception. Most of
the problems in the direction of software
manufacturing are people related.

It is claimed that by using Object-
oriented reusability technologies based on
Framework have achieved 70% reduction in
schedule and 84% in costs [19]. Both Now
time and cost reductions are the basic goals of
Lean thinking.

Lean Enterprise Model

Before a Lean Software Development
model is suggested, a brief review of the Lean
Enterprise Model as developed by Lean
Aircraft Initiative is worthwhile.

Lean Enterprise model of LAI is based
on the meta-principles: Responsiveness to
change and Waste Minimization. The enterprise
principles consist of Right thing at Right Place,
Right Time, and in Right quantity/quality,
effective relationships within the Value Stream,
Continuous Improvement, and optimal First
Delivered Unit Quality. This model suggests
enterprise level metrics like flow time,
stakeholders satisfaction, resource utilization
and quality yield. This model also recommends
the following 12 overarching practices:

(1) Identification and optimization of
enterprise flow

(2) Assuring Seamless information flow

(3) Optimization of capability and

(4) Decisions at lowest possible level,

(5) Integrated product and process

(6) Mutual trust and commitment

(7) Continuous focus on the customer

(8) Lean leadership at all levels

(9) Challenging of existing processes

(10) Nurture a learning environment

(1 1) Ensure process capability and

(1 2) Maximize stability in changing

The above apply to any enterprise
including those which are involved in the
development of software.

utilization of people

development

maturation

environment.

Lean Software Development Model

While it is true that software
development is very different from normal
hardware product development and production
the Lean principles can still be applied. There is
always an argument that Software development
is a creative work as such not amiable to
hardware development practices which I
believe, is not true. Lean thinking is applicable
to any activity or processes including software
development processes.

My first suggestion is that Software
Factories model based on reusability of
software components should be adopted.
Industrializing software development is the first
step.

There are several technologies
emerging. IEEE has a Reuse Steering
Committee (RSC) with a scope related to the
analysis, design, implementation, verification,

0-7803-5086-3 /98/$10.00 01998 IEEE' C13-6

validation, documentation and maintenance of
reusable software assets, as well as their
supporting infrastructure in the creation and
maintenance of new software systems. RSC
will ensure coordination of standards related to
software reuse and their general harmonization
with the more general body of software
engineering standards. Emerging programming
languages particularly those based on Object-
Orientation like C++, Java, Visual Basic, and
Ada to mention a few facilitate reusability.

Concurrent Engineering has been
effectively used to reduce the flow time of
product development in the hardware world.
Software product development can benefit by
using this concept. Software development
concurrency often involves the use of system
prototypes that allow the software architect to
build a skeletal system and try it out in the real
world environment. The “spiral” software
development model as well as “stacked spiral “
model use this concept of prototyping [17].
Prototyping helps not only to resolve design
issues but also the most important software
requirements issues.

SEI’S CMM[9] should be adopted to
move the organization to higher levels with
emphasis on the processes.

Continuous Improvement and
“perfection” concept of Lean can be followed
by using what Wirth calls as “stepwise
refinement” or “synch-and-stabilize” approach
used at Microsoft. Microsoft also assigns the
responsibility of ensuring that the “build” is
not broken by the individual’s software
component or code fragments to the individual
developer. Thus the waste introduced in the
build by defective code is eliminated.

Testing is a very important and also
very expensive phase in the software
development. In Japan quality control or
quality assurance is defined as the
development, design, manufacture and service
of products that will satisfy the customer’s
needs and at the lowest possible cost. The
0-7803-5086-3 /98/$10.00 01998 IEEE C13-7

customer’s satisfaction with product quality is
an end in itself. Inspection by specialized
inspectors have been minimized in Lean
factories. Inspectors whose activities are
outside the manufacturing process perform
operations with no value added and thus impact
productivity and cost. The responsibility for the
quality of the product lies with the producer.
This would be a radical thinhng in software
development. In the current scenario extensive
testing is done at various levels, unit test,
Integration test, functional test and final tests by
the end user (Alpha and Beta tests). There is
scope to adopt Lean thinking here by delegating
the responsibility to the developer or the
integrator for quality. This is an area which
requires some investigation. It is also evident
that if software components already produced
are used testing will be minimum. We
understand that as the use and age of the
software component increases its quality also
does.

Conclusion

I have discussed above what is meant by
Lean and the various software
methodologies/technologies that contribute to
Lean thinking in software development. The
next steps in the software community is to
move from a craft to an engineering discipline,
industrialize the software development utilizing
factory model and Lean Thinking. Reusability,
rapid prototyping, spiral model, object-oriented
technologies, component-based software
development , concurrent engineering, quality
function deployment are some of the concepts
that will help in the direction of Lean

The question whether Lean Software
Development is Feasible can easily be
answered with “yes”.

References

(1) Lean Air II , Winter 1998, A
Publication of the Lean Aerospace
Initiative, Massachusetts Institute of
Technology, Vol5, No 3.

(2) J.P.Womack, D.T.Jones, and
D.Roos, The Machine That
Changed The World, Simon &
Schuster, 1990.

(3) Taichii Ohno, Toyota Production
System, Productivity Press, 1988.

(4) J.P.Womack, and D.T.Jones, Lean
Thinking, Simon & Schuster, 1996.

(5) “Condit, Stonecipher Speak Out”,
Boeing News, an internal Boeing
company magazine, June 12, 1998.

(6) N.Wirth, “A Plea for Lean
Software”, IEEE Computer, Vol 28,
No 2; February 1995.

(7) M.Imai, Kaizen, The Key to Japan’s
Competitive Success, McGraw-Hill
Publishing CO, New York, 1986.

(8) M.A.Cusumano, and R.W.Selby,
Microsoft Secrets, The Free Press,
1995

(9) M.C.Paulk, W.Curtis, M.B .Chrissis,
and C.V.Weber, Capability Maturity
Model for Software, Version 1.1,
CMU/SEI-93 -TR-2, Software
Engineering Insitute, Camegie
Mellon University, Pittsburgh, PA
15213,1993.

(10) Y.Akao, Quality Function
Deployment, Integrating Customer
Requirements into Product Design,
Productivity Press, 1988.

(1 1) J.R.Hauser and D.P. Clawing,
“House of Quality”, Harvard
Busines Review, May/June 1988.

(12) B.Gordon, From Worst to First:
Behind the Scenes of Continental’s
Remarkable Comeback-A Flighgt
Plan for Success, John Wiley &
Sons, 1998.

(13) M.Hammer, Beyond Re-
Engineering: how the process-
centered organization is changing
our work and our lives, Harper
Business, 1996.

(14) A.W.Brown, Component-Based
Software Engineering, Selected
papers from the Software
Engineering, IEEE Computer
Society Press, 1996.

(15) A.C.Hou, “Toward Lean
Hardware/S oftware System
Development: Evaluation of
Selected Complex Electronic
System Development
Methodologies, Report-Lean 95-0 1,
Lean Aircraft Initiative,
Massachusetts Institute of
Technology, Cambridge, 1995.

(16) M.A.Cusumano, Japanese Software
Factories, Oxford University Press,
1991.

(1 7) Draft Department of Defense
Software Technology Strategy,
Office of The Director of Defense
Research and Engineering,
Washington DC, 1991

(1 8) J.Vu, “Boeing Scientist Tours
Japan”, unpublished Boeing internal
document.

(19) P.Bassett, “Managing for Flexible
Software manufacturing”, IEEE
Computer, July 1998

0-7803-5086-3 /98/$10.00 01998 IEEE C13-8

