The Role of Collective Intelligence and Expectations Management in
Maximizing the Value of the Software Engineering Process
1- Problem Statement
The way we view things significantly impacts the way we understand them and the way we are able to control their outcomes. Software engineering is no exception. The traditional view of software development as a technically-oriented process has had three key negative impacts on the effectiveness of software engineering strategies and process models throughout their evolution.
Firstly, this view fails to link requirements and design decisions to value creation and maximization objectives and metrics in a bidirectional fashion (the value factor). Failure to add value continues to be a wide spread problem in many software projects. This is often clearer when projects have tight time frames which in turn decreases their resource allocation capacity and increases their risks and vulnerabilities in a very changing and highly competitive environment.
Secondly, it focuses on engineering the software product itself rather than managing the process that creates a software–based solution for a given business problem (the interdisciplinary process factor).
Thirdly, it emphasizes on the evolutionary behavior of the artifact through its developmental stages rather than on the behavior of those creating or those involved in the creation of the artifacts (the people factor). Since most software development is still carried out by people rather than machines, software development strategies should be analyzed in terms human behavior .

By viewing software development from a value-driven , interdisciplinary and human-centered prospective , software engineering becomes more consistent with its original description as a problem solving activity and offers more synchronization and integration between software processes and business processes .In other words , this view re-defines software engineering as a set of collaborating and interacting processes that mirrors the effects of human learning and communication , multi-stakeholders interaction and requirements engineering strategies on value–maximization of the software development process .
Clearly , there is a lack of adequate frameworks for modeling, measuring and analyzing the connections between software engineering strategies and value creation in the people and interdisciplinary contexts throughout the literature .
This research work is an attempt to offer extensive analysis of value maximization strategies in software engineering and study the key interdisciplinary human variables influencing value creation in short-term software projects. As a result, this research will offer a configuration for a new model for value-driven software engineering .This model will aim at value maximization of the software engineering process
2- Theory
2.1- A Brief Review of Value-Driven and Economic-Based Strategies in Software Engineering
Throughout the short software engineering history , technical investigation has been heavily and thoroughly carried out to identify drivers for the repeated phenomenon of software projects failure .However, this has lead only to limited and slow progress . Technology has grown exponentially over the years with more and more people getting well trained and certified in technology and development skills . Unfortunately, this all happened with lack or absence of business or value-driven training and mentorship . This has ultimately left technical development of solutions isolated from business wisdom and advice . This isolation resulted in shifting process ownership from its own stakeholders and business managers to people who frequently forced solutions to catch problems and not visa versa .
Additionally , the impact of technical challenges has significantly decreased with the evolving era of reusability , object oriented development , code generation , CASE tools , cleanroom software engineering , commercial of the shelf software development (COTS) , concurrent development , agile methodologies , and similar supportive technologies used to aid rapid application development strategies (RAD) .

 The structure and configuration of early software development life cycle models, frameworks or strategies exemplify how the technical ownership of the process influenced the definition of IT-based problem solving approaches. Royce’s waterfall model in the late 60’s viewed the software process as a sequence of activities in which business specifications play an activity role rather than being considered key metrics for evaluation. In other words, in the early software engineering literature, it is software development that included value as an early requirements definition activity and not value-driven business development that utilizes software or technology as a tool.
 It took software engineering theorists another decade or so to recognize the strong engagement of economics in software development explicitly in terms of Boehm’s series of spiral models. History of software development evolution has shown continuous shifting along the spectrum toward more appreciation to value driven software development. The spiral model in the 80’s was a dramatic shift toward value appreciation through the focus on risk management and software economics alike . By the end of the 90’s. the same Spiral model inventors moved more toward multi-stakeholders satisfaction through their popular win-win spiral model and its later extensions .

Since the 90’s , software economics has become a core subject in software engineering research and a lot more integration between business and technology took place on many fronts .Yet , many software projects today still lack clear and precise value focus and often return little or less than the expected value on their investments .

Although there are still many demands of developing more business metrics and measurements to guide , structure and evaluate software development , conventional software economics has already left its marks and shaped several areas in software engineering. There have been a number of main stream software engineering strategies which demonstrate the impact of value maximization concepts and software economics on software engineering – based problem solving strategies as illustrated in the following table.
	Year
	Economics Driver
	Influence on Software Engineering
	Explanation of Linkage

	1960-1962
	Application of economics principles on information science
	The evolution of Information economics as a macro discipline of software economics
	Economics of :

1- advertising and search for best prices
2- research and development
3- overall knowledge industry

	1966
	Cost Analysis
	Early cost estimation approach for software
	Developing a linear regression model for estimating software costs by System Development Corporation (SDC) for the U.S. Air Force

	1969
	Evaluation of economic choices
	The Economics of Computers First comprehensive and direct economic application to computers and computing
	Choices between buying, leasing, or renting computer systems; pricing computer services, and economies of scale in computer systems.

	1972
	Comprehensive view of Information Economics
	Economic Theory of Teams
	Comprehensive treatment of multi-dimensions of information economics

	1978-1986
	Cost Modeling Evolution and minimal Cost strategy
	Software Cost Estimation Models :
1-Slim 1978
2- Prices 1979

3- COCOMO 1981

4- SPQR/Checkpoint 1986

	1-Assessing complexity factors that affect software costs
2- Estimating resources required to develop a project

	1981-1985
	Production functions, economies of scale, net value, marginal analysis, present value and statistical decision theory
	· Software Economics
· Processing Technology and Economics 1979
· Computers and Profits 1980
· Software Engineering Economics 1981

· The Economics of Computers : Costs, Benefits, Policies and Strategies 1985

	1-a summary of the major concepts and techniques of microeconomics
2- applying information-

economics techniques to computer-related decisions

	80’s and 90’s
	Statistical Decision Theory
	Software Risk management
	prototyping, testing, formal verification, etc.

	1988
	A- Risk and product value considerations
B- RAND-style treatments of defense economic analysis (1960)
	Spiral, iterative and evolutionary development models
	Sequence increments of capability

	1997
	Exploring the Relationship between architecture and economics
	Significant impacts Software Reuse
	Linking design decisions to the economic value (productivity and quality).

	80’s and 90’s
	Net present value, return on investment and break even point analysis
	Software Economic feasibility study
	Measuring the value of the software investment in terms of cost-benefit analysis

	1989-1998
	A- Multi –stakeholders satisfaction (win-win strategies)

B – Utility Functions

	1-Participatory design

2- Join application Design

3- Stakeholder win-win requirements engineering
	Collaborative software development reflects the impact of human factors in software engineering economics (stakeholders and developers)

	90’s
	A- The time dimension in value creation (Productivity)
B- The relationship between time and value (Time value of money (TVM) or the opportunity cost)
	RAD strategies

1- Component-based development (including Commercial of the shelf (COTS))
2- Very high level languages (VHLL)

3- Code Generators
4- CASE tools supported development

5- Agile strategies (including extreme programming)

6- Concurrent Software Development

7- Cleanroom Software Engineering
	1-Boosting software productivity , cost minimization , cycle time reduction and proper allocation for human resources

2- Evolving rapid application development strategies (RAD): rapidly bringing product to market considering opportunity cost of delay in shipping a product in a competitive market place.

	90’s
	Time-to-market factor
	COCOMOII extension (CORADMO) and COCOTS
	Support reasoning in regard of rapid schedules for smaller projects

2.2 - Human Factors and Value Creation in Software Engineering

People are the “corner stone” in any IT-based problem solving process since business problems are solved for people by people. The role of human factors in software process models has attracted much less attention from the research community for many years .Scientists who urge high degree of consideration for human factors in software engineering often emphasize that technical factors alone are not sufficient to explain the variance in value creation .
Problem solving is a collaborative process that requires management support, commitment and understanding from stakeholders . It also demands serious cooperation from departments , employees and every other entity relevant to the problem and the solution .
Basically , there are two types of people who play key roles in the software engineering process , people who build the system and people who use it .
System builders are not limited to people who code the application or carry out the implementation . Building a system includes all phases and activities that lead to solve the problem from managing the project to studying the market to estimating the costs and benefits to assessing the risks to analyzing the requirements to architecting the solution to finalizing the deliverables .
People who use the system are not limited to direct users who input data to the system and receive immediate outputs from the system . System users include all project stakeholders who are influenced by the system or may have some influence on the system . This includes employees , customers , managers , owners , partners , value chain entities , advisory boards , government agencies , relevant communities , etc with all their sub-classifications .
Builders and users often interact with each other at many levels and in many ways . Their interaction may happen either naturally or through controlled procedures and requirements engineering techniques. The interaction between and within builders and users can be in form of collaboration or conflict of interests . Enhancing collaboration , achieving multi-stakeholders satisfaction and resolving conflicts are key objectives in any problem solving process . Yet , this usually involves many unforeseen challenges and uncertainties. Therefore , managing the people factor in software engineering is often linked to risk management .

Builders and users are tightly coupled to value creation in software development . Value is defined through users’ objectives , strategies , policies , constraints , needs and requirements and then validated , evaluated , tested and quality assured through their metrics and satisfaction . Value is achieved through builders research , coordination , collaboration , management , analysis , design , implementation , verification and maintenance. It is essential to streamline and share value definition and value creation across the board of builders and users.
While approaches to address the influence of human factors on value creation were fairly limited in the engineering literature , there have been some significant contributions . Configuring numerous scenarios of system builders dynamics was the subject of what Abdel-Hamid and Madnick published in 1989. This paper related team configurations to value creation in terms of productivity from a project management perspective.
Leveson (2000) , on the other hand , addressed human factors from a cognitive psychology prospective He pointed out that effective software-driven problem solving cannot be achieved efficiently without adopting adequate strategies based on correct understanding of humans and their real needs. Leveson indicated that the way we represent a problem has an important impact on our problem-solving ability and the strategies we use . This is an extremely significant element in comprehending how the people factor (builders or users) can explain , predict or influence value creation in software projects. For software process architects , this re-defines process configuration. For builders , this re-defines team composition , skill set required , tasks and activities. For users , this clarifies the importance of managing expectations and requirements engineering .
 The Japanese version of CPI (continuous process improvement) offers a clear view of the human factors element as an essential asset to enhance quality . Chase et al (1994) used software usability as a metric for value creation .They considered user interface design and behavioral approaches as critical measurements for software usability . According to this study, software process modeling should be based on behavioral representation techniques in which scope, content and requirements are the most influential drivers as illustrated in the following diagram.
Scope indicates the activities within user interface development process while content represents the interaction components including user definition, cognitive processes, main-line action task, feedback display, etc. Requirements imply the qualities of the representation including facility and expressiveness.

 Another key concept in the literature is cognitive engineering. Cognitive engineering integrates systems engineering, cognitive psychology and human factors in terms of their capabilities and limitations of the human element in complex systems .This clearly indicates the interdisciplinary nature of the impact of human factors on software engineering .
To utilize the human factor efficiently, the following issues should be carefully addressed.:

· We need to identify all types of people who are significant, relevant , and irredundant to the software engineering process , rationalize their involvement and define their roles.
· We need to structure and map people information to build a complete knowledge base about system builders and users alike .

· We need to make teams of system builders more value –driven through collective intelligence .
· We need to manage stakeholders expectations and requirements in a very dynamic and changing environment that can only be characterized today with high degree of uncertainty , equivocality , competitiveness and vulnerability .

· We need to see how we can use the people factor in value creation and maximization in software projects
3- Research question
What is the role of collective intelligence and expectations management in maximizing the value of the software engineering process ?

This study will be focused on studying the relationship between the three key variables indicated in the above review . The most important variable of this study is value –maximization in short-term projects .

The other two variables involve interdisciplinary human factors .These are : management of change in terms of multi-stakeholders requirements (expectations management) and interdisciplinary team composition and collaboration (collective intelligence) .

Value maximization is best measured in terms of producing benefits or having options to produce benefits at costs that are less than the value of resources used , or producing benefits or having options to produce benefits at costs that are less than the competitors cost . This is whether this benefit is a financial or a social benefit which in turn depends on the context in which the business is operating. Productivity increase , cost reduction , risk minimization , quality assurance , market share , competitive advantage as well as other intangible benefits are all key metrics to measure and evaluate the rate of value maximization
 .
Expectations management involves identifying the psychological , social and political characteristics of multi-stakeholders as well as a broad array of extensive requirements elicitation strategies to explore all sorts of possibilities and needs in a dynamic and changing environment with high degree of uncertainty .Expectations managements also explores existing risks , predict future ones and provides strategies to reduce vulnerabilities as essential elements of the requirements capturing process .
Collective intelligence is about team composotition ,team collaboration and team intelligence . In a production economy, value creation is tightly coupled with physical logistics, labor and finance while in knowledge-based economy value is primary driven by the ideas and creativity of collaborating team members. This implies that business performance is related to collective intelligence , knowledge management and information and collaboration technologies today more than ever before .

[image: image1.emf]Software

Usability

Scope

Content

Requirements

Activities in

the Interface

development

process

Facility

Expressivenes

s

Cognitive

Processes

Main-line

action task

Feedback

User

Definition

Display

Key Factors And Drivers Influencing Software Usability According To Chase (1994)

[image: image2.wmf]People

System Users

(

Stakeholders

)

System Builders

(

Development

Team

)

Internal

Customer

External

Customer

Manager

Developer

System

Architect

Requirements

Engineer

Project

Manager

Market

Researcher

Direct

User

Partner

Investor

Other

Type

A Preliminary Structure of Key People Engaged in the Software Engineering Process

_1167047180.vsd
Software
Usability

Scope

Content

Requirements

Activities in the Interface development process

Facility

Expressiveness

Cognitive Processes

Main-line action task

Feedback

User
Definition

Display

_1167055465.vsd
People

System Users
(Stakeholders)

System Builders
(Development Team)

Internal Customer

External
Customer

Manager

Developer

System Architect

Requirements Engineer

Project Manager

Market Researcher

Direct User

Partner

Investor

Other Type

