
1

An Effective Taxonomy For Software Process Models

Completed Research Track
Abstract:

 A vast body of knowledge exists in the software engineering literature regarding software process

models. The evolution of process modeling has resulted in a diversity of methods that tends to suit

software project requirements from different perspectives. This paper surveys the field of software

process models in an effort to build an effective taxonomy that categorizes process models in terms

of their functionalities and interrelationships. This taxonomy is a step toward tailoring process

models to specific project requirements. The research methodology is carried out through a 4-steps

grouping process: data collection, data analysis, data representation and data grouping, which

involved a literature survey of existing process models. Based on this survey, two frameworks are

introduced to address similarities and differences among software process models. Consequently, a

comparison table is presented and utilized to establish taxonomy of software process models in an

object-oriented fashion. Finally, directions for future research work are suggested.

Keywords

Software engineering, process modeling, process assessment, process diversity, requirements

engineering, project management, tailorability, software development, process models evolution

Word Count: 4,996

Pages: 18 (excluding the title page)

This document was created by Print2PDF

http://www.software602.com

http://www.software602.com

2

1.0 -Introduction

 The diversity of software process models has been at the center of a wide range of research efforts

for some time [1], [2], [3], [4], [5], [6], [7]. Although all process models share the goal of providing

effective solutions for real world problems, they adopt different approaches in tackling problems

based on the methodology utilized, technology afforded, business requirements raised or

interdisciplinary impacts involved. These approaches include establishing limited frameworks [8],

[9], [10], [11], [12], introducing new solutions, and expanding existing solutions toward better

adaptability to project specific needs. While some of these research efforts concentrate on studying

this diversity in terms of building a comprehensive understanding, other studies focus on developing

new approaches to elicit [13], replace [14], [15] or unify existing process models [10], [16].

However, only some of these studies are focused explicitly on providing a comprehensive, well-

categorized taxonomy that enable software project managers to efficiently select and configure

software process models to the specific characteristics of their projects.

2- Problem definition:

A vast body of knowledge exists in software engineering literature regarding software process

models. Each model needs to be tailored to the business and project requirements and characteristics

in terms of quality and productivity goals [1]. This is better achieved by placing every process model

in its proper location in a comprehensive framework (taxonomy) of all process models. Building this

larger picture will enhance our understanding of the specific capabilities of every process model and

how it can be tailored and utilized to specific project and organizational needs. This paper is an

attempt to build such a comprehensive taxonomy for software process models based on a 4-STEP

grouping process. The basic research question is how to determine an appropriate way of classifying

software process models effectively.

3- Research Methodology: A 4-step methodology is adopted in this paper to classify software

process models. This methodology is as follows:

This document was created by Print2PDF

http://www.software602.com

http://www.software602.com

3

A-Data Collection: Extracting Process Models From Literature survey:

In this step, a literature survey of software process models is conducted to extract the major

streams in process models.

B- Data Analysis: Establishing Frameworks For Similarities And Differences:

In this step, similarities, differences, relations and rationales among process models are explored

and frameworks are presented to address how process models share common goals and how they

also have different characteristics.

C-Data Representation: Building The Comparison Matrix For Software Process Models

In this step, a comparison matrix between explored process models is introduced to establish a

foundation for the grouping process.

D- Data Grouping: Class Diagram Taxonomy

In this step, a final framework of process models classification is concluded based on the

previous steps. This framework is diagrammed in terms of a static object class hierarchy diagram

that also depicts associations and inheritance.

4- Data Collection: Extracting Process Models From Literature survey

 The software process is a framework for problem solving. To solve real world problems, software

engineers must incorporate a development strategy that encompasses the process, the methods and

the tools, which is typically referred to as a process model [8]. Before the age of software

engineering, the code and fix model was the primary approach adopted [2] where solutions are

developed regardless of careful problem analysis or serious requirements determination. The

waterfall model, proposed by Royce (1970), has played a significant role in process modeling

evolution over the decades, as it has become the basis for most software acquisition standards [5].

The waterfall was another improved version of the earliest process model named nine-phase stage-

wise model. The V-shaped model was an extension of the waterfall with the incorporation of

validation and verification procedures, especially in one of its latest modified versions [6].

This document was created by Print2PDF

http://www.software602.com

http://www.software602.com

4

 Prototyping was the second most influential technique in software process modeling as it was

adopted –implicitly or explicitly- in almost every process model after the waterfall. Although there is

no unique definition for software or information systems prototype [17], [18], we can recognize

three significant characteristics of it: it is temporary, it is fast and it is a visual representation of the

proposed system. It is also based on an evolutionary view of software development [18].

 The popular spiral model, proposed by Boehm (1988), also exhibits a heavy reliance on

prototyping [19] and software engineering economics [20], as it is mainly a risk-driven process

model [5]. Boehm integrated previous process models (waterfall, evolutionary, incremental,

transform) into his spiral model based on project-customized needs in an effort to maximize benefits

and reduce uncertainty. In an effort to resolve model clashes and conflicts, Boehm [15] expanded

spiral model to another version named “win-win spiral model” which is more customer-driven and

user-centred.

 Pressman [8] presented a comprehensive survey for process models in which he introduced the

linear sequential (classical waterfall), prototyping model, RAD model, incremental model, spiral

model, component assembly model, and concurrent development model as the most frequently used

models. Somerville [9] included the evolutionary development, the formal transformation, and

assembly from reusable components in his categorization. Behforooz and Hudson added the

Department Of Defense (DOD) system development life cycle and the NASA model. Both of these

models were waterfall driven.

 Both iterative and incremental (sometimes called phased development [21]) share the goal of

reducing the cycle time in the development process .The incremental model is based on building

parts of the system in each release until the final system is completed. However, the Ada process

model extends this discipline into three dimensions: subsystem increments, build increments and

component increments [22]. In the iterative model, the whole system is developed in the first release

This document was created by Print2PDF

http://www.software602.com

http://www.software602.com

5

but improved iteratively in each of the following releases until achieving the most optimized system

[11].

 Furthermore, the iterative approach is the strategic framework for the unified process model

suggested by the pioneers of the object-oriented UML at Rational Rose. The unified software

development approach, proposed by Jacobson et al. (1998) [23], addressed some of the problems

with previous models using an object-oriented approach and UML standards.

 Abdel-Hamid et al. [24] introduced a dynamic model (1988-1991) to address management

considerations coupled with software economics aspects. In 1987, IBM proposed another process

modeling framework named the Cleanroom process model. It is a team-driven approach to software

engineering in which intellectual control of the work is ensured through continuous reviewing by a

qualified small team and the use of the formal methods in all the process phases in conjunction with

statistical quality control of an incremental development process [25].

 Additionally, process models based on object-oriented techniques were also integrated throughout

the software process modeling evolution. Their application areas include "development of an

abstract theory of software process, formal methods of software process, definition and analysis,

simulation of software process and the development of automated enactment support" [26].

 In 1998 the Commercial of the shelf (COTS) approach in process modeling was proposed and has

gained more attention over the time. COTS components can be a complete application, an

application generator, a problem-oriented language, or a framework in which specific applications

are addressed by parameter choices [27].

 Moreover, the Internet has had a significant impact on software process modeling in the last few

years. Web development life cycle, recently referred to as web engineering, is also gaining an

increasing interest in software development [28].

 Furthermore, the business process-reengineering (BPR) trend in synchronizing business

processes and software processes is being reflected in the reengineering process model. The TAME

This document was created by Print2PDF

http://www.software602.com

http://www.software602.com

6

process modeling approach also represents another step toward integrating process modeling with

product metrics along with the automation capabilities of CASE tools in a more unified framework

[1].

 Integrating good practices has influenced the software process models towards continuous

improvement in an evolutionary cycle. This can be seen with models that focus on quality assurance

in the software process such as the Capability Maturity Model (CMM) (1993), the Bootstrap Model,

the Spice Model and other process improvement models [29]. Several later attempts also integrated

the CMM model with ISO9000 standards for quality assurance in software development.

 Finally, the cognitive prospective and human factors in developing process models are also

reflected in process modeling literature since problem solving cannot be achieved efficiently without

adopting adequate strategies that are based on understanding of humans and their real needs [14].

Behavioral approaches have enhanced software usability from a user-oriented prospective

particularly in the area of user interface design, thus influencing process modeling as well [30].

 5-Data Analysis: Establishing Frameworks For Similarities And Differences:

Although several factors contribute to the formation or development of process models, all process

models aim to achieve common goals and share general characteristics regardless of their degrees of

success or accomplishment. These common goals and characteristics of process models can be

summarized as follows:

1- Significant Role of requirements engineering: Process models in general attempt to provide a

solution from a relatively well-defined problem. However, there are different levels and degrees of

problem definition and specification.

2- Influence of waterfall model: Process models in general adopt four common stages of software

development (i.e.: analysis-design-code-maintenance) implicitly or explicitly in a sort of sequence.

This implies the influence of the waterfall model regardless of what degree of linearity is

incorporated [14].

This document was created by Print2PDF

http://www.software602.com

http://www.software602.com

7

3-Reliance on documentation: Process models in general rely on documentation and artifacts as the

main tool to assure quality, planning, monitoring and tracability. It is also likely that his reliance is

negatively correlated with the degree of automation and usage of CASE tools based on the primary

purpose of using these CASE tools.

4- Stakeholders involvement: Process models in general attempt provide sufficient control over the

software development process in order to achieve a valid and verified software product that meets

stakeholders’ requirements and expectations. Stakeholders are the primary driver for the software

engineering process.

5-The project management dimension: Process models in general are forms of managing project

complexity in a more efficient manner. Projects are practical implementations of process models

strategies. The final goal is to produce cost-effective software solution within budget and on time.

6-Financial Goals: Obviously, the most significant goal of process models is financial success in

terms of profit maximization, cost reduction [20] or customer satisfaction. A traditional way to

express financial goals in the software engineering literature is to address them in terms of meeting

deadlines, within the budget, and utilizing resources in an efficient manner [31].

This document was created by Print2PDF

http://www.software602.com

http://www.software602.com

8

 Stakeholder Stakeholder Stakeholder Stakeholder

 Fig.1. A framework of common characteristics among process models

 Figure 1 presents a framework of common characteristics among process models. In this

framework, a well-defined problem represents the significant role of requirements engineering input

in the development process. Moreover, this element reflects the increasing influence of user

involvement in all phases of the software development life cycle. Financial goals in Figure 1

represent the crucial outcome anticipated from the software development process, as there is no need

for a software product that is not proven to be economically feasible. The third necessary element

in this framework is stakeholders. Stakeholders could be direct or indirect users of the software

product, people who influence the decision of determining system requirements, or developers and

staff members involved in the development process The fourth element is the artifacts and

deliverables. The fifth and final element is the tasks that should be followed to achieve a feasible

solution from a well-engineered problem.

 Despite these commonalities, process-modeling evolution is subject to accumulative refinements

as a function of time and diversity in nature of projects and applications .It is also triggered by the

changes in business environments, technological capabilities and evolution in software development

 Software engineering activities

Well-
defined
Business
Problem

Financial
Goals
Profit
Cost

Customer

Task
A

Task
B

Task
C

Task
D

Artifacts

This document was created by Print2PDF

http://www.software602.com

http://www.software602.com

9

methodologies. Therefore, based on our survey above we can infer that the differences among

software process models solutions can be attributed to one or more of the following influencing

factors:

 Time and previous work influence: Time has played an important role in process modeling

evolution. Taking earlier experiences into consideration, later models were based on careful

evaluation of their formers. For example, the V-shaped was another version on the waterfall

model but with different structure.

 Technology: Some models were functions of technology advancements over the years. For

example, the rapid application development (RAD) approach is motivated by the introduction

of CASE tools and 4GT techniques. Furthermore, the web engineering modeling frameworks

are a reflection of the Internet age. According to Summerville, artificial intelligence utilizes

the exploratory programming approach to emulate some human capabilities [9].

 Interdisciplinary impacts: Several models were the result of more interdisciplinary effects

including psychological [14], managerial [24] and financial considerations as in [32],[5],[20].

 Methodology and problem solving approach: Several software process models are

reflections of problem solvers’ methodological approaches, such as sequential development

as opposed to iterative development, and structured analysis and design versus object

oriented analysis and design.

 Problem Domain: Application domain is another factor that triggers the evolution of

software process models. DOD and NASA models are examples of domain-specific models.

 Problem nature: The nature of the problem addressed is primary driver in process modeling

evolution. Problem nature encompasses three components in respect of business problems:

size, structure and complexity.

This document was created by Print2PDF

http://www.software602.com

http://www.software602.com

10

o Large and small: While problems associated with large systems have triggered some

approaches [33], other small-scale projects required solutions that are more scalable

to suit their needs.

o Problem structure: The more complex are organizations the more ill structured are

their problems [34] and the harder it becomes to take decisions at strategic levels.

o Problem Added-Complexity: Although problem structure and size are major drivers

of problem complexity, there are other software-related and organizational-related

elements that can add to complexity. For instance, there is a positive correlation

between organization complexity and the impact of technical change [35].

 Behavioral Considerations: These considerations are the primary rationale for integrating

system dynamics in process modeling. Process models that lack these considerations are

more static in their structure [11], [30].

 Critical Factors or drivers: Process models tackle problems from different angles based on

the major drivers of each process model. These drivers can be a major factor in categorizing

process models and providing a profound understanding of their interrelationships. The major

differences in process models are mapped in a schematic diagram as shown in Figure 2:

Common
Process model

Technology

Problem Domain

Interdisciplinary
Impacts

Methodology

Problem nature

Time Dimension

Behavioral
Considerations

Critical Factors

This document was created by Print2PDF

http://www.software602.com

http://www.software602.com

11

 Fig 2. The context diagram of software process modeling

 The above context diagram of software process modeling (Fig 2.) shows the eight most important

factors impacting process modeling diversity as explored in the literature survey. The time

dimension implies the evolution of software process models as a function of time while the

interdisciplinary impact points out how several sciences and disciplines have influenced the

development of software process models. Based on the literature survey, the time dimension has also

triggered the change in technology, methodology and nature of business problems, which strongly

impacted process models diversity as well. According to literature, behavioral considerations were

the source of variation of several recent process models. Finally, many process models were focused

on one or more critical factors as the main drivers for developing these models.

6- Data Representation: Building The Comparison Matrix For Software Process Models

Consequently, and based on the context diagram shown in Figure 2, a comparison table is developed

as follows:

Process
Model

T
im

e
D

im
en

si
on

(E
vo

lu
ti

on
 in

 g
oa

ls
)

M
et

ho
do

lo
gy

T
ec

hn
ol

og
y

C
ri

ti
ca

l F
ac

to
rs

In
te

rd
is

ci
pl

in
ar

y
Im

pa
ct

s

B
eh

av
io

ra
l

C
on

si
de

ra
ti

on
s

P
ro

bl
em

 n
at

ur
e

A
pp

li
ca

ti
on

 D
om

ai
n

Waterfall Solving stage-
wise problems

Sequential and
structured-
oriented

Not- critical Tasks None None Large scale
Projects

General

Prototyping
Model

Overcoming
late
implementations
in long cycles

Iterative Can
accelerate
The process

User
feedback

Psycho. None Small scale
projects but
can be
integrated
with other
large-scale
oriented
models

General but
more
successful
with
artificial
intelligence
systems and
user
interface
design

Evolutionary
models

Overcoming
sequential
thinking

Iterative or
incremental

Can
accelerate
The process

User
feedback

Psychol. None Relatively
small systems

General but
more
successful
with
artificial
intelligence
systems and
user
interface

This document was created by Print2PDF

http://www.software602.com

http://www.software602.com

12

design
Incremental
and iterative
models

Overcoming
sequential
thinking

Iterative or
incremental

Can
accelerate
The process

User
feedback

None None Initial
Shortage of
resources and
predicted
technical risks

General

V-shaped
model

Modified
version of
waterfall with
more focus on
quality
assurance

Sequential Not- critical Tasks , where
testing is
related to
analysis and
design

None None Large scale
Projects

General

Spiral model Addressing risk
assessment
overlooked in
previous models

Iterative with
risk metrics

Recent
automated
tools are
proposed for
model
generation

Risk
Management

Economics High user
interaction
specially in
the win-win
version

 Mainly
Large scale
projects with
high degree of
uncertain

General

MIS-oriented
model

Addressing time
management
and cost-benefit
analysis more in
depth
(More business
oriented than
other models)

Sequential Can be
significantly
optimized by
CASE tools

Projects
management.

MIS None Large and
complex

Business
information
systems

4GT - based
models

Function of
available state-
of-the-art
Technologies

Automatic
transformation
And CASE
tools

Totally
dependent
on software
automation
and process
technology

Specification
languages

AI None Used for both
small and
large systems
but require
more design
considerations
for large
systems

Recently
becoming
able to
address
most
software
application
categories

Rapid
application
development

High-speed
adaptation of
the waterfall
model

Rapid Linear
sequential
development
and Reuse

Can have
great
influence

Cycle Time
reduction and
reusable
program
components

None None Good for
small systems
but need
sufficient
human
resources for
large scalable
systems

Some times
not
appropriate
for high
performance
systems,
high
technical
risks or
when a
system
cannot be
properly
modularized

TAME Improvement-
oriented
software
development
model

goal –question
– metrics
(GQM)

Initial
prototypes

Feedback and
measurements

None High User
involvement

More focus
on
tailorability
for different
Project
requirements

General

CASE-tools
based models
Or automated
development
models

Supportive to
several other
models

Using waterfall
with CASE
tools support

Dependent
on CASE
tools

Software
CASE tools

AI None None General

Object-
oriented
process
models

Overcoming
structured-
oriented
problems

Object-
oriented
techniques and
reusability

Can be
extremely
improved by
CASE tools

Class objects
components

None None Large and
small systems

(More
generic)
Ability to
work with
cross-
platform
applications

Unified
Software
Development
process

Capturing
advantages and
overcoming
disadvantages in

Object-
oriented based
on UML
And iterative

Rationale
rose ready –
made
software

UML
approach

Economic and
management
considerations

None Large and
small systems

General

This document was created by Print2PDF

http://www.software602.com

http://www.software602.com

13

all previous
models

modeling

Component
assembly
model

Utilizing
Software reuse
advantages
overcoming
problems in
structured
paradigms

Object-
oriented
methodology
and spiral
model
incorporation

Can be
extremely
improved by
CASE tools

Class objects
components

None None Large and
small systems

(More
generic)
Ability to
work with
cross-
platform
applications

Assembly
from reusable
components
model

A Japanese
version of
components
assembly

Object-
oriented from
existing parts
of the system

Existing
system
components

None None Large and
small systems

General

Dynamic
(management-
oriented)
model

Heavy focus on
managerial
considerations

System
dynamics

Should be
supported by
software to
capture links
and
quantitative
descriptions
due to high
degree of
complexity

Process
Simulation

Management Crucial
specially
with human
resources

More
adequate for
Large systems

General

Behavioral
models

System
dynamics

Management

Commercial-
of-the-shelf

“COTS”

Utilizing ready-
made software
solutions

Efficient
Outsourcing
and reusability
to build cost-
effective
applications

Can be very
effective

Ready-made
reused
applications

Economics None Might be
difficult to
manage
change in
complex
environments
which need
high degree of
flexibility and
customization

Dependent
on
availability

Formal –
based models

Focusing on
accuracy and
reducing
ambiguity
incompleteness
and
inconsistency
for efficient
verification

Mathematical
Transformation

Highly
dependent
on Software
automat.

Mathematical
Specification

Math Primarily,
none

Complex
systems with
sufficient
resources

Depending
on level of
staff
training,
available
time and
money, and
types of
customers

Cleanroom
(IBM) model

Focusing on
accuracy and
reducing
ambiguity
incompleteness
and
inconsistency

Mathematical
Transformation

Highly
dependent
on Software
automation

Specification
Language

Math Primarily,
none

Complex
systems with
sufficient
resources

IBM but can
be
generalized

Concurrent
development
model

Capturing the
richness of
concurrency
that exists
across various
project activities

Activity
analysis with
state
identification

Activity
status

Computer
Engineering

None Systems with
concurrency
and/or
networking-
architectures

General
But more
likely in
client-server
applications

Web-based
(Web
engineering)
models

Response to
internet
requirements

More
dependent on
object –
oriented
modeling

CASE tools
can be
highly
efficient
when
incorporated.

Web elements None None Large and
small web-
systems

Web
applications

Reengineering
–based
models

Dramatic
changes over
existing systems

Business
Process-
oriented
utilizing
reverse
engineering
techniques

IT is crucial IT and human
resources

Modern
business

Can have
significant
influence

Complex and
large systems

General but
more likely
with legacy
systems
with many
problems

This document was created by Print2PDF

http://www.software602.com

http://www.software602.com

14

Process
improvement
models

Assessing and
improving
software
product quality

Mainly CMM
and ISO
standards

Becoming
strongly
correlated
with
software
automation

Customer
satisfaction

Industrial
engineering
and marketing

Play
important
role

Large systems General

Department
of defense
(DOD) model

A modified
version of
waterfall model

Sequential
problem
solving

None Tasks with
PDR Formal
Reviews

None None Large systems Department
of defense

NASA model Waterfall
structure with
slight difference
in naming

Sequential
problem
solving

None Tasks with
function
configuration
audit

None None Large systems NASA

Operational
specification
model

Another version
of prototyping

Iterative None Early user
involvement

None High user
involvement

Large and
small General

Resource and
schedule
driven model

Based on
waterfall with
very little
formality and
driven by
schedule

Sequential
problem
solving

None Tasks with
certification
testing
incorporation

None None Large systems General

6- Results: Data Grouping in Class Diagram Taxonomy

 Based on the comparison table presented in the last section, we conclude that the following classes

or grouping can capture the variety of process models in terms of shared characteristics, major

differences and interrelationships amongst them. This is a primary taxonomy toward creating a

comprehensive framework for software process modeling in general.

1. Linear task-oriented models: Sequential problem-solving approach applied generally on

large-scale projects where activities decomposition is the core of this class. Long-term

delivery is another characteristic for this class with the exception of rapid development

models where models are maintain sequential approaches but designed to deliver software

products more rapidly than the other subclasses. Members of this category include:

 Waterfall, V-shaped, MIS –Oriented, DOD, NASA, Concurrent, RAD and resource

schedule models

2. Reusable object-oriented components models: Characterized by combinations of multiple

process models and based on reusable components. These process models are also based on

object-oriented methodologies. Members of this category include:

This document was created by Print2PDF

http://www.software602.com

http://www.software602.com

15

 Component assembly, assembly from reusable components, COTS, unified development

and web-based models. However, the unified development model (UPM) also exhibits

multiple inheritance from iterative modeling as well.

3. Quality assurance models : Typically focusing on process improvement in terms of CMM

or ISO standards . Many subclasses in this category are associated with CASE tools, software

automation and IT advancements Members of this category include: capability maturity

model (CMM), IS09000, TAME model and business process engineering (BPR) models.

4. Dynamic Models: Behavioral and managerial considerations are crucial for this category.

Heavy emphasis is on project control in terms of real world visualization and simulation.

Therefore, Software automation can have a considerable effect on the efficiency of these

models. Members of this category include: Abdel-Hamid’s dynamic process model and

behavioral models.

5. Iterative economic models : Economic considerations in terms of risk management and

users' early input are major factors in these models. Members of this category include:

incremental model, prototyping model, evolutionary model, operational specification

model, and spiral model in its different versions. The unified process model is part of this

group in terms of its highly iterative manner.

6. Transformational models : Math and specification languages for later software automation

distinguish this category .However, it is still limited due to that lack of human resources and

expensive implementation. Members of this category include: Formal model and IBM

cleanroom model.

7. Fourth Generation Techniques Driven Models: Although this category does not have

independent members, it is associated with other members in other categories to enable other

process models to generate more efficient results. Some of the other process models are

totally dependent on highly automated techniques provided by 4-GT environment. Members

This document was created by Print2PDF

http://www.software602.com

http://www.software602.com

16

that belong to this category include: object-oriented models, RAD models and

transformational models.

 Figure 3 demonstrates this classification in a class hierarchy diagram of process models based on

Coad-Yourdan notations. This taxonomy is a step toward tailoring process models to specific project

requirements. Therefore, it is part of the efforts towards creating a general or unified problem-

solving framework in software engineering. This taxonomy also reflects the impact of technological

advancements on the software development process.

 Future extensions to this taxonomy would include additional process models that were not

addressed in this study. Future studies may also consider an evaluation process to tailor super and

sub-classes in this taxonomy to the variety of project requirements. Additionally, it is planned to

examine whether this taxonomy can be generalized or replicated in the software engineering

discipline. To have a reliable examination, the authors also intend to develop a relevant empirical

study to reveal the statistical significance of this grouping process. A long term project would be to

create a specialized CASE tool that can automate the utilization of this taxonomy to help in

establishing a decision process in which project managers and decision makers can adequately tailor

process models to their projects and organizational requirements.

This document was created by Print2PDF

http://www.software602.com

http://www.software602.com

17

 control
 Deliver
 produce

 problem definition
 relation with waterfall
 Artifacts
 Stakeholders
 Financial goals
 Project management

strategies

Process Model

Assembly from
reusable

components

Reusable
object-oriented

component model

Linear
task-oriented

model

 Iterative
economic

 model

Quality Assurance
Model

Dynamic/ behavioral
 Model

Transformational
Model

IBM
cleanroom

Model

Formal
Model

Component
assembly

model

COTS
model

Unified
development

model

Waterfall
Model

V-shaped
Model

NASA
model

Spiral
Model

prototyping
Model

Evolutionary
model

Web-based model

DOD
model

MIS-
Model

Concurrent
model

Incremental
model

CMM
model

ISO
model

TAME
model

BPR
model

Rapid
development

model

CASE/4GT
Oriented
Model

Associated with
Associated with

Object class hierarchy diagram
for

 Software process models
classification

References

[1] Victor R. Basili and H. Dieter Rombach. , "The TAME Project: Towards Improvement-Oriented
Software Environments, " IEEE Transactions on Software Engineering, v. SE-14, n. 6, , June 1988,
pp. 752-772.
[2] Watts S. Humphrey and Marc I. Kellner, “Software process modeling: principles of entity
process models,” Proceedings of the 11th international conference on Software engineering,1989,
pp. 331 – 342.
[3] Sergio Bandinelli, Alfonso Fuggetta, Luigi Lavazza, Maurizio Loi, and Gian Pietro Picco,
"Modeling and Improving an Industrial Software Process," IEEE Transactions on Software
Engineering, vol .21,no.5, May 1995, pp. 440-454.
[4] Bill Curtis, Marc I. Kellner and Jim Over, “Process modeling,” Communications of the ACM
vol. 32, no. 9 , Sep. 1992 , pp. 75 – 90.
[5] Barry Boehm , "A Spiral Model of Software Development and Enhancement," IEEE Computer,
vol.21, #5, May 1988 , pp. 61-72.
[6] “The process cycle”, Software Engineering Journal, IEE & The British Computer Society,
September 1991, v. 6, no. 5, pp. 234-242.

This document was created by Print2PDF

http://www.software602.com

http://www.software602.com

18

[7] H. Krasner, J. Terrel, A. Linehan, P. Arnold, and W.H. Ett. , “Lessons learned from a software
process modeling system,” Communications of the ACM, 35(9), 1992, pp. 91-100
[8] Roger Pressman, Software Engineering: A Practitioner's Approach, 4th Edition, New York, NY
McGraw-Hill, ISBN 0070521824- 1438, 1996.
[9] Ian Somerville, Software Engineering, New York, NY, Addison-Wesley, ISBN 0-201-17568-1,
1995.
[10] Ali Behforooz,, Software Engineering Fundamentals, ISBN 0-19-510539-7, Oxford university
press, New York, 1996.
[11] Shari Lawrence Pfleeger, Software Engineering: Theory and Practice, Upper saddle River, NJ:
Prentice Hall Corp, 1998.
 [12] Bruce I. Blum, “Taxonomy of Software Development Methods,” Communications of the ACM
37(11), 1994, pp. 82-94
[13] Madhavji, N.H., Hoeltje, D., Hong, W. and Bruckhaus, T., “Elicit : A Method for Eliciting
Process models, “ Proceedings of the 3rd International Conference on Software Process, Reston,
Virginia, 1994, pp. 111-122.
[14] Leveson, N.G., “Intent specifications: an approach to building human-centered specifications,”
IEEE Transactions on Software Engineering, , Volume: 26 Issue: 1, Jan 2000 , pp. 15 –35
[15] Boehm, B. & Port, D., “Escaping the software tar pit: Model clashes and how to avoid them,”
Software Engineering Notes, 24(1), January 1999, pp. 36-48.
[16] Armitage, James W. and Marc I. Kellner. ,"A Conceptual Schema for Process Definitions and
Models," Proceedings of the 3rd International Conference on the Software Process (Held at Reston,
Virginia, USA, IEEE, October 1994, pp.153-165.
[17] Alavi, M., "An Assessment of the Prototyping Approach to Information Systems
Development," CACM, 27(6), June 1984,pp. 556-563.
[18] Lichter, Horst, Matthias Schneider-Hufschmidt and Heinz Zullighoven ,"Prototyping in
Industrial Software Projects," IEEE Transactions on Software Engineering, Vol 20 No. 11, 1989, pp.
25-832.
[19] Yamamichi, N., Ozeki, T., Yokochi, K. and Tanaka, T. , “The evaluation of new software
developing process based on a spiral modeling,” Global, Telecommunications Conference, 1996.
GLOBECOM '96. 'Communications: The Key to Global Prosperity, Volume: 3, 1996, pp. 2007 -
2012
[20] B. Boehm, “Software Engineering Economics,” IEEE Transactions on Software Engineering,
Vol. 10, No. 1, January 1984 , pp. 4-21.
[21] D. Graham, “Incremental Development and Delivery for large Software Systems “ , Colloquium
on Software Prototyping and Evolutionary Development, IEEE, November 1992.
[22] Royce W., “TRW's Ada Process model for Incremental Development of Large Software
Systems, “ TRW Technologies Series, TRW-TS-90-01, January 1990.
[23] Ivar Jacobson, Grady Booch and James Rambaugh, The Unified Software Development
Process, ISBN: 0-201-57169-2, Addison Wesley, New York, 1998.
[24] Tarek Abdel-Hamid and Stuart E. Madnick, “Lessons learned from modeling the dynamics of
software development,” Communications of the ACM, vol. 32, no. 12, Dec. 1989, pp .14-26
[25] Carmen J., Trammell, Leon H. Binder and Catherine E. Snyder, “The Automated Production
Control Documentation System: A Case Study In Cleanroom Software Engineering“, ACM
Transactions on Software Engineering Methodology vol. 1, no. 1, Jan. 1992, pp. 81 – 94.
[26] John D. Riley, “An Object-Oriented Approach To Software Process Modeling And Definition”,
Proceedings of the 1994 conference on TRI-Ada '94, 1994, pp. 16 – 22.
[27] W. Morven Gentleman, “Effective use of COTS (commercial-off-the-shelf) software
components in long-lived systems” (tutorial), ACM Proceedings of the 1997 international
conference on Software engineering, 1997, pp. 635 – 636.

This document was created by Print2PDF

http://www.software602.com

http://www.software602.com

19

[28] Jung Reinhard and Robert Winter, “Case For WEB SITES Towards An Integration Of
Traditional Case Concepts And Novel Development Tools”, Institute for Information Management
University of St. Gallen, http:\\iwi1.unsg.ch\research\webcase, 1998.
[29] Somerville, I.; Sawyer, P.; Viller, S., “Managing process inconsistency using viewpoints,” IEEE
Transactions on Software Engineering, Volume: 25 Issue: 6, Nov.-Dec. 1999, pp. 784 –799.
[30] J. D. Chase, Robert S. Schulman, H. Rex Hartson and Deborah Hix,” Development and
evaluation of a taxonomical model of behavioral representation techniques” ACM, Conference
proceedings on Human factors in computing systems: , “celebrating interdependence,”1994, pp.159
– 165.
[31] Liu, L. and Horowitz, E.,"A Formal Model For Software Project Management,” IEEE
Transactions On Software Engineering. Vol. 15. N0. 10, October 1989, pp. 1280-1293.
[32] Ropponen, J.; Lyytinen, K., “Components of software development risk: how to address them?
A project manager survey,” IEEE Transactions on Software Engineering, Volume: 26 Issue: 2,
Feb2000, pp. 98 –112.
[33] Frank DeRemer and Hans H. Kron. "Programming-in-the-Large Versus Programming-in-the-
Small," IEEE Transactions on Software Engineering, v. ~SE-2, n. ~2, June 1976, pp. 80-86.
[34] Mitroff, Ian and Murray Turoff, "Technological Forecasting and Assessment: Science and/or
Mythology?" Journal of Technological Forecasting and Social Change 5, 1973, pp. 13-134.
[35] Keen, Peter G.W., “ Information Systems and Organizational Change,” Communications of the
ACM, 24 (1), Jan 1981, pp. 24-33.

This document was created by Print2PDF

http://www.software602.com

http://www.software602.com

