
Software Development Strategies

Classification Of Software Development Strategies

 Main streams in software development problem solving approaches encompass the
following strategies:

1. Linear task-oriented models: Sequential problem-solving approach applied
generally on large-scale projects where activities decomposition is the core of this
class. Long-term delivery is another characteristic for this class with the exception
of rapid development models where models are maintaining sequential
approaches but designed to deliver software products much more rapidly than the
other subclasses. Members of this category include:
 Waterfall, V-shaped, MIS –Oriented, DOD, NASA, Concurrent, RAD and
resource schedule models

2. Reusable object-oriented components models: Characterized by combinations
of multiple process models and based on reusable components. Members of this
category include:
 Component assembly, assembly from reusable components, COTS, unified
development and web-based models. However, unified development model also
multiple inherits from iterative modeling as well.

3. Quality assurance models : Typically focusing on process improvement in
terms of CMM or ISO standards . Many subclasses in this category are associated
with CASE tools, software automation and IT advancements Members of this
category include: capability maturity model (CMM), IS09000, TAME model and
business process engineering (BPR) models.

4. Dynamic Models: Behavioral and managerial considerations are crucial for this
category. Heavy emphasis is on control by means of real world visualization and
simulation. Therefore, Software automation can have a considerable effect on the
efficiency of these models. Members of this category include: Abdel-Hamid
model and behavioral models.

5. Iterative economic models : Economic considerations in terms of risk
management and user’s early inputs are major factors in these models. Members
of this category include: incremental model, prototyping model, evolutionary
model, operational specification model, and spiral model in its different
versions. The unified model is part of this group in terms of its highly iterative
manner.

6. Transformational models : Math and specification languages for later
software automation distinguish this category .However , it is still limited due
lack of human resources and expensive application. Members of this category
include: Formal model and IBM Cleanroom model.

7. 4-GT Models: Although this category does not have pure members, it is
associated with several other members in other categories as it enables other
process models to work more efficiently. Indeed, some of the other process
models are totally dependent on these highly automated techniques provided by 4-
GT environment. Members associated to this category include: object-oriented
models, RAD models and transformational models.

 Fig.3 demonstrates this classification in a class hierarchy diagram of process models
based on Coad-Yourdan notations. This taxonomy is the platform for our later analysis in
order to take adequate decisions and define profound criteria.

ü control
ü Deliver
ü produce

ü problem definition
ü relation with waterfall
ü Artifacts
ü Stakeholders
ü Financial goals
ü Project management

strategies

Process Model

Assembly from
reusable

components

Reusable
object-oriented

component model

Linear
task-oriented

model

 Iterative
economic

 model

Quality
Assurance

Model

Dynamic/ behavioral
 Model

Transformational
Model

IBM
cleanroom

Model

Formal
Model

Component
assembly

model

COTS
model

Unified
development

model

Waterfall
Model

V-
shaped
Model

NASA
model

Spiral
Model

prototyping
Model

Evolutionary
model

Web-based
model

DOD
model

MIS-
Model

Concurrent
model

Incremental
model

CMM
model

ISO
model

TAME
model

BPR
model

Rapid
development

model

CASE / 4- GT
Oriented
Model

Associated with

Associated
with

Associated with

Fig . 3
Object hierarchy diagram

for
 process models classification

Comparison Among Problem Solving Strategies In Software Engineering

 Consequently, and based on the context diagram shown in Fig 2.15, a comparison table
is developed as follows:

Comparison Table Between Problem Solving Strategies In Software Engineering

Process
Model

Ti
m

e
D

im
en

si
on

(E
vo

lu
tio

n
in

go
al

s)
M

et
ho

do
lo

gy

Te
ch

no
lo

gy

C
ri

tic
al

F
ac

to
rs

In
te

rd
is

ci
pl

in
a

ry
Im

pa
ct

s

B
eh

av
io

ra
l

C
on

si
de

ra
tio

n
s

Pr
ob

le
m

na
tu

re

A
pp

lic
at

io
n

D
om

ai
n

Waterfall Solving stage-
wise
problems

Sequential and
structured-
oriented

Not- critical Tasks None None Large scale
Projects

General

Prototyping
Model

Overcoming
late
implementati
ons in long
cycles

Iterative Can
accelerate
The process

User feedback Psycho. None Small scale
projects but
can be
integrated
with other
large-scale
oriented
models

General but
more
successful
with
artificial
intelligence
systems and
user
interface
design

Evolutionary
models

Overcoming
sequential
thinking

Iterative or
incremental

Can
accelerate
The process

User feedback Psycho. None Relatively
small systems

General but
more
successful
with
artificial
intelligence
systems and
user
interface
design

Incremental
and iterative
models

Overcoming
sequential
thinking

Iterative or
incremental

Can
accelerate
The process

User feedback None None Initial
Shortage of
resources and
predicted
technical risks

General

V-shaped
model

Modified
version of
waterfall with
more focus on
quality
assurance

Sequential Not- critical Tasks , where
testing is
related to
analysis and
design

None None Large scale
Projects

General

Spiral model Addressing
risk
assessment
overlooked in
previous
models

Iterative with
risk metrics

Recent
automated
tools are
proposed for
model
generation

Risk
Management

Economics High user
interaction
specially in
the win-win
version

 Mainly
Large scale
projects with
high degree of
uncertain

General

MIS-oriented
model

Addressing
time
management
and cost-
benefit
analysis more
in depth
(More
business
oriented than
other models)

Sequential Can be
significantly
optimized by
CASE tools

Projects
management.

MIS None Large and
complex

Business
information
systems

4GT - based
models

Function of
available
state-of-the-
art
Technologies

Automatic
transformation
And CASE
tools

Totally
dependent
on software
automation
and process
technology

Specification
languages

AI None Used for both
small and
large systems
but require
more design
considerations
for large
systems

Recently
becoming
able to
address
most
software
application
categories

Process
Model

Ti
m

e
D

im
en

si
on

(E
vo

lu
tio

n
in

go
al

s)

M
et

ho
do

lo
gy

Te
ch

no
lo

gy

C
rit

ic
al

 F
ac

to
rs

In
te

rd
is

ci
pl

in
ar

y
Im

pa
ct

s

B
eh

av
io

ra
l

C
on

si
de

ra
tio

ns

Pr
ob

le
m

 n
at

ur
e

A
pp

lic
at

io
n

D
om

ai
n

Rapid
application
development

High-speed
adaptation of
the waterfall
model

Rapid Linear
sequential
development
and Reuse

Can have
great
influence

Cycle Time
reduction and
reusable
program
components

None None Good for
small systems
but need
sufficient
human
resources for
large scalable
systems

Some times
not
appropriate
for high
performance
systems,
high
technical
risks or
when a
system
cannot be
properly
modularized

TAME Improvement-
oriented
software
development
model

goal –question
– metrics
(GQM)

Initial
prototypes

Feedback and
measurements

None High User
involvement

More focus on
tailorability
for different
Project
requirements

General

CASE-tools
based models
Or automated
development
models

Supportive to
several other
models

Using waterfall
with CASE
tools support

Dependent
on CASE
tools

Software
CASE tools

AI None None General

Object-
oriented
process
models

Overcoming
structured-
oriented
problems

Object-oriented
techniques and
reusability

Can be
extremely
improved by
CASE tools

Class objects
components

None None Large and
small systems

(More
generic)
Ability to
work with
cross-
platform
applications

Unified
Software
Development
process

Capturing
advantages
and
overcoming
disadvantages
in all previous
models

Object-oriented
based on UML
And iterative
modeling

Rationale
rose ready –
made
software

UML
approach

Economic and
management
considerations

None Large and
small systems

General

Component
assembly
model

Utilizing
Software
reuse
advantages
overcoming
problems in
structured
paradigms

Object-oriented
methodology
and spiral
model
incorporation

Can be
extremely
improved by
CASE tools

Class objects
components

None None Large and
small systems

(More
generic)
Ability to
work with
cross-
platform
applications

Assembly
from reusable
components
model

A Japanese
version of
components
assembly

Object-oriented
from existing
parts of the
system

Existing
system
components

None None Large and
small systems

General

Dynamic
(management
-oriented)
model

Heavy focus
on managerial
consideration
s

System
dynamics

Should be
supported by
software to
capture links
and
quantitative
descriptions
due to high
degree of
complexity

Process
Simulation

Management Crucial
specially
with human
resources

More
adequate for
Large systems

General

Behavioral
models

System
dynamics

Management

Commercial-
of-the-shelf

“COTS”

Utilizing
ready-made
software
solutions

Efficient
Outsourcing
and reusability
to build cost-
effective

Can be very
effective

Ready-made
reused
applications

Economics None Might be
difficult to
manage
change in
complex

Dependent
on
availability

applications environments
which need
high degree of
flexibility and
customization

Formal –
based models

Focusing on
accuracy and
reducing
ambiguity
incompletene
ss and
inconsistency
for efficient
verification

Mathematical
Transformation

Highly
dependent
on Software
automat.

Mathematical
Specification

Math Primarily,
none

Complex
systems with
sufficient
resources

Depending
on level of
staff
training,
available
time and
money, and
types of
customers

Cleanroom
(IBM) model

Focusing on
accuracy and
reducing
ambiguity
incompletene
ss and
inconsistency

Mathematical
Transformation

Highly
dependent
on Software
automation

Specification
Language

Math Primarily,
none

Complex
systems with
sufficient
resources

IBM but can
be
generalized

Concurrent
development
model

Capturing the
richness of
concurrency
that exists
across various
project
activities

Activity
analysis with
state
identification

Activity
status

Computer
Engineering

None Systems with
concurrency
and/or
networking-
architectures

General
But more
likely in
client-server
applications

Web-based
(Web
engineering)
models

Response to
internet
requirements

More
dependent on
object –
oriented
modeling

CASE tools
can be
highly
efficient
when
incorporated.

Web elements None None Large and
small web-
systems

Web
applications

Reengineerin
g –based
models

Dramatic
changes over
existing
systems

Business
Process-
oriented
utilizing
reverse
engineering
techniques

IT is crucial IT and human
resources

Modern
business

Can have
significant
influence

Complex and
large systems

General but
more likely
with legacy
systems
with many
problems

Process
improvement
models

Assessing and
improving
software
product
quality

Mainly CMM
and ISO
standards

Becoming
strongly
correlated
with
software
automation

Customer
satisfaction

Industrial
engineering
and marketing

Play
important
role

Large systems General

Department
of defense
(DOD) model

A modified
version of
waterfall
model

Sequential
problem
solving

None Tasks with
PDR Formal
Reviews

None None Large systems Department
of defense

NASA model Waterfall
structure with
slight
difference in
naming

Sequential
problem
solving

None Tasks with
function
configuration
audit

None None Large systems NASA

Operational
specification
model

Another
version of
prototyping

Iterative None Early user
involvement

None High user
involvement

Large and
small General

Resource and
schedule
driven model

Based on
waterfall with
very little
formality and
driven by
schedule

Sequential
problem
solving

None Tasks with
certification
testing
incorporation

None None Large systems General

Key Process Life Cycle models:

1- Waterfall model

Model Name Waterfall Model

Model Evolution (refinements) V-shaped model, NASA waterfall model, DOD waterfall model, MIS –
Based waterfall, Staged contracts

Date of Birth 1970
Developer Winston Royce
IT drivers Lack of portability and compatibility forced developers to operate and

communicate within static and structured settings where software
development phases are dependent on each other.

Model Roots

Business Drivers 1- Software crisis (i.e.: lack of control over time and money) lead to
general models based on best practices.

2- Top-down structured and heavily centralized organizations resulted
in linear sequential process models.

Model definition Classical Definition: A software development strategy in which once a
phase of development is completed, the development proceeds to the
next phase and there is no turning back.
(Original Waterfall had feedback loops but was rarely implemented in
this mode in the first few years of release)

Model architecture Linear

Pros -Still the super class of many process modeling approaches in software
engineering.
- Breaks down the development process into sub-processes when dealing
with complexity or large systems

Model Evaluation

Cons - Lack risk assessment, low degree of user engagement, very slow, and not
adequate for object – oriented environment.
- Inability to manage change or guide transformation from a phase to
another.

Model support No CASE tools support

Model tailorability Large projects with relatively flexible or long timeframes and little focus on
risk management and user involvement.

Model Future Remains embedded in every new model implicitly .Yet, not suitable for
rapid application development or projects that have high degree of emphasis
on risk minimization or customer satisfaction.

Acitivity 1

Activity 2

Activity 3

Activity 4

An Abstraction of the waterfall model
(The mother of problem solving strategies in SE)

Figure 2.9. Waterfall Model

 The waterfall model was one of the very first and most influential process models.
The waterfall model has played a significant role in process modeling evolution over the
decades, as it has become the basis for most software acquisition standards (Boehm,
1988). In fact, it was another improved version of the earliest process model named nine-
phase stage-wise model (Madhavji et al, 1994). While the stage-wise model was a one
directional linear model, the waterfall maintained the sequential linear nature but with bi-
directional relations between the development stages. These bi-directional relations
served as feedback loop, which provided developers with more control over the software
process. Moreover, the waterfall model introduced the primary idea of prototyping
(Madhavji et al, 1994).
 The waterfall did well in partitioning the business problem into digestible pieces
especially when dealing with complexity or large systems. It was a highly influential
refinement of the stage wise model as it recognized the feedback loops and had an initial
incorporation of the prototyping in the software life cycle (Boehm, 1988). Also , it is
used extensively for it is convenience in schedule and quality control at each process
completion (Yamamichi et al, 1996).
 In 1992, the German Ministry of Defense introduced a modified version of waterfall
named the V-shaped model. This model has more focus on validation and verification
procedures by means of testing activities associated with analysis and design phases and
reveals the iteration and rework that are hidden in the waterfall description (Madhavji et
al, 1994).
 However, waterfall is lacking risk assessment, very slow, and not adequate for object –
oriented environment. That doesn’t imply that objects oriented life cycles are always
better. According to some experimental studies (Cheatham and Crenshaw, 1991), this is
dependent on the problem type and development team experience.
 Imposing a project management structure was another drawback of the waterfall
model. Furthermore, the waterfall model did not provide a guide for activity
transformation among phases, which negatively impacts the capability to handle changes
occurring during the development process. Another criticism of the to the waterfall model
was its way of viewing the development process as a manufacturing process rather than a

dynamic problem solving process that evolves over the time back-and-forth in a learning
manner (Pfleeger, 1998). The bi-directional nature of waterfall phases was not quite
sufficient to address this issue as it depends on developers’ feedback rather then user
involvement. Other problems of the waterfall approach include: “lack of addressing
pervasiveness of changes in software development, unrealistic linear description of
software processes in real world, difficulty in accommodating advanced languages or
recent development, insufficient detail to support process optimization “ (Humphrey and
Kellner, 1989). As Boehm (1996) indicated, the waterfall’s millstones did not fit an
increasing number of project situations.
 Although the waterfall model has many drawbacks, it is still the super class of many
process-modeling approaches in software engineering. The idea of decomposition and the
sequential step-by-step approach in tackling business problems addressed by the waterfall
model can be expanded or enhanced. However, they are difficult to be totally replaced as
essential aspects in managing the increasing complexity in software projects.

2-The Prototyping Model:

Model Name Prototyping

Model Evolution (refinements) Throwaway (exploratory) prototyping, experimental prototyping, evolutionary
prototyping, rapid prototyping, embedded prototyping in other process models
(iterative, incremental, spiral, etc.).

Date of Birth Late 70’s
Developer Several pioneers contributed to the initiation of prototyping use in software

development.
IT drivers Enhanced portability and compatibility by the emerging desktop computing

facilitated rapid application development and easy communication among
development teams, management and direct users.

Model Roots

Business Drivers - More attention given to user involvement and management engagement
influenced with an increasingly customer-focused economy.
-Emergence of software economics, which triggered emphasis on risk
management and reduced cycle times in software production.

Model definition Systems development strategy in which a prototype (an early release of a final
software product) is built, tested, and then reviewed and reworked as necessary
until an acceptable prototype is eventually accomplished from which the
complete product can now be developed. This product can be the final release of
the prototype (evolutionary) or a result of its guidance (throwaway).

Model architecture Circular structure where phases of the software development process are
connected in an iterative feedback control loop.

Pros -Ability to extract meaningful feedback from users early in the development
process
-Providing a common baseline for users and developers to identify problems and
opportunities
-Motivating users involvement and establishing better relationship between users
and developers

Model Evaluation

Cons - Overestimation that can oversell the software product
- Difficulty of management and control
- Difficulty in working with large systems
- Difficulty in maintaining user enthusiasm

Model support CASE tools enable quick mockup designs, visual representations of the system,
automatic code generation, reverse engineering and automatic transformations
between software development phases.

Model tailorability - Essential for Rapid application development
- Crucial for spiral, iterative, incremental and rational process models
-Fits best in developing small and average size systems. Yet, it can be also very
helpful to support large systems.

Model Future Prototyping is part of most new approaches in software development including
“Agile “ and “Rational process “ models.

Activity 1

Activity 2

Activity 3

Activity 4

Prototype

Stekeholders
Feedback

Common Abstraction of the
iterative model where

prototyping is the
cornerstone

Figure 2.10. The Prototyping (Iterative) Model

 Prototyping was the second most influential technique in process modeling as it was
adopted –whether implicitly or explicitly- in almost every process model after the
waterfall. Indeed it was even a visualized extension to the feedback bi-directional control
in the waterfall itself as the later had an initial incorporation of prototyping (Boehm,
1988). Although there is no unique definition for software or information systems
prototype (Alavi, 1984), (Lichter et al, 1994), we can recognize three significant
characteristics of it: it is temporary, it is fast and it is a visual representation of the
proposed system. It is also based on an evolutionary view of software development
(Lichter et al, 1994). Prototyping has been often associated with the evolutionary
development model. Also, the operational specification model suggested by Zave can be
considered as a variation of prototyping (Pfleeger, 1998).
 Major benefits from prototyping includes: ability to extract meaningful feedback from
users early in the development process, providing a common baseline for users and
developers to identify problems and opportunities, motivating users involvement,
establishing better relationship between users and developers (Lichter et al, 1994).
Furthermore, though it is perceived to be more expensive, prototyping addressed some of
the limitations of the waterfall such as semi and non-structured requirements (Khalifa et
al, 2000).
 However, prototyping has major shortcomings as well including: overestimation that
can oversell the software product, difficulty of management and control, difficulty in
working with large systems, difficulty in maintaining user enthusiasm (Alavi, 1984).
Moreover, several studies indicated that prototyping does not offer any support for
structuring the software development process but was typically used as integrated part of
conventional software development life cycles (Lichter et al, 1994). However, Pfleeger
(1998) argued about the ability of prototyping to be itself the basis of an effective process
model and proposed a complete prototyping model from system requirements to the
finally delivered system with iterative loops of lists of revisions among process main
phases.

According to Lichter et al, it might be necessary to use a good mixture of presentation
prototypes, prototypes proper, breadboards, and pilot systems for a successful system
development.

 In general we can distinguish between five categories of prototyping:

1-Exploratory prototyping: Prototyping is used here as a requirements gathering
technique
2-Experiemntal prototyping: Prototyping is used here as a testing or evaluation
technique to verify if the proposed system will meet user/customer expectation.
3- Evolutionary prototyping: Prototyping here is used to incrementally to explore
changing requirements and adapt a system to them. What differentiates this approach
from incremental development is that requirements here cannot be determined prior to
implementation.
4- Embedded prototyping: Prototyping is used here as a part of another software
development strategy.
5- Combined prototyping : This approach integrates several prototyping strategies in
software production depending on the development stage or the purpose of utilization.

 In fact, prototyping played several roles in process modeling. On the one hand it was a
partial or a whole solution for process modeling as in (Pfleeger, 1998), (Alavi, 1984),
(Lichter et al, 1994) .On the other hand it was a tool for assessment, evaluation,
monitoring or experimental studies (Bradac et al, 1994) for software process models

3- The Spiral Model:

 The popular spiral model has heavy reliance on prototyping (Yamamichi et al, 1996)
and software engineering economics (Boehm, 1984), as it is mainly a risk - driven
process model (Boehm, 1988). Boehm integrated all the previous process models
(waterfall, evolutionary, incremental, transform) into his spiral model based on project-
customized needs in an effort to maximize benefits and reduce uncertainty. However, he
used these previous models as tools (i.e.: utilized just when needed) in his typical cycle
rather than adopting the whole approach in each model. In addition, his model was user-
sensitive as he exhibited that through iterative cycles of validation and verification.

Model Name Spiral Model

Model Evolution (refinements) Win-Win Spiral, Life Cycle Anchor Points and MBASE

Date of Birth 1986-1988
Developers Barry Boehm
IT drivers Emerging superior processing power, cheap memory, desktop computing,

networking infrastructures and DBMS technologies created more software
development demands, opportunities and competition, which involved new
risks and challenges.

Model Roots

Business Drivers Three driving forces:
1- Increasing competition, which made acquiring competitive

advantage and market share a matter of survival.
2- High degree of uncertainty due to low level of business

predictability.
3- Power of customers since they became more literate in computers,

more selective in products and services, and more influential on the
markets.

Model definition Spiral Model exemplifies evolutionary development inheriting the
attributes of waterfall model for each step but with strong emphasis on
risk management. A key characteristic that distinguishes the Spiral
model is its focus on working only with prioritized parts of the system
first in conjunction with continuous feedback from customers /users.
After examining these parts, developers go back to define and
implement more features in smaller chunks.

Model architecture Spiral (iterative loops).

Pros -Creates a risk driven approach as opposed to document driven or code
driven approaches
-Utilization of all the advantages of existing process models overcoming
process models difficulties by practical focus on risk-management
- Highly flexible, adaptable and designed for customization

Model Evaluation

Cons -Contractual development usually restricts software development to a
particular process model and deliverables in advance.
-Requires risk assessment knowledge and expertise that is not always
available among software developers
- For general use it is necessary to refine the model

Model support Automation tools are available

Model tailorability The model is claimed to be a generic model that can be tailored to fit every
situation.

Model Future The model is moving toward more business process integration and CASE
tools automation.

 Basically there are 4 types of rounds in the spiral model. Round 0 is the feasibility
study round; Round 1 is the concept of operation round, Round 2 is the top-level
requirements specifications round; the succeeding rounds.
 According to Boehm, advantages of the spiral model include utilization of all the
advantages of existing process models and overcoming process models difficulties by
practical focus on risk-management. Also it is highly flexible, adaptable and designed for
customization (Boehm, 1988). Boehm pointed out that projects, which fully used the
system, increased their productivity at least 50 percent. However, he discussed some of
the potential difficulties encountering his model including: matching it to the world of
contract software acquisition, its reliance on risk-assessment experiences, the need for
further elaboration of spiral model steps.

Phase 1

Phase 2 Phase 3

Activity 1

Activity 2
Risk

Assessment
1

Prototype

Activity 1

Activity 2
Risk

Assessment
2

Prototype

Activity 1

Activity 2
Risk

Assessment
3

Prototype

Activity 1

Activity 2
Risk

Assessment
4

Prototype

Phase 1

Phase 4

Phase 3

Phase 2

A Decomposition of The Spiral Model Showing How The Spiral Model Incorporates
Prototyping, Iterative Development, Risk Management and Waterfall Activities in One

Model

 Addressing risk was one of the important motives in the evolution of process models
over the years. Risk can be defined as a state or property of a development task or
environment, which, if ignored, will increase the likelihood of project failure (Ropponen
and Lyytinen, 2000). Indeed introducing risk-driven process models was a significant
jump in process modeling after a huge library of models based on document –driven or
code-driven approaches as “the evolving risk driven approach provided a new framework
for guiding the software process (Boehm, 1988). This new model was claimed to be fully
adaptable to the full range of software project situations and flexible to accommodate a
high dynamic range of technical alternatives and user objectives. However, it needs
further calibration to be fully usable in all situations (Boehm, 1988). Boehm’s list of
risk-related items in software developments became very popular and widely adopted.
However, they were oriented to large software systems, including some multi-items that
need to be further decomposed, having a project management flavor, and lacking some
theoretical foundation (Ropponen and Lyytinen, 2000). While Boehm seems to be the
first to introduce risk components in his spiral models, some previous models attempted
to address this issue more implicitly.
 Using Process models in combinations might have good effects if integrated efficiently.
Although the spiral model was initiated independently and focused on risk management,
it was incorporated with several other process models. It was integrated with prototyping
and component assembly models to produce more successful models. Using the spiral
model in conjunction with the prototyping model can have a positive effect on risk
reduction. Moreover, integrating formal methods with prototyping can have a great
influence on prototyping quality (S. Liu et al, 1998). Indeed prototyping can be used as a
generic tool in the software development process. Not only prototyping can be integrated
with other process models, but also it can help evaluating specific phases such as the
requirements phase or even assessing the efficiency of the whole development cycle by
means of utilizing it as an experimental tool. In this regard, prototyping can be used as a
mechanism in monitoring software processes before investing a great deal of efforts and
resources (Bradac et al, 1994).
 The spiral model can even be used as a process model generator (Boehm and Belz,
1990). In other words it can work as an enabler based on a software process model
decision table so it can assist the selection decision more efficiently.
 In an effort to resolve model clashes and conflicts, Boehm (Boehm and Port, 1999)
expanded his spiral model to another version named “win-win spiral model”. In this
version of spiral model Boehm used a stakeholder win-win approach to determine the
objectives constraints and alternatives for each cycle of the spiral. In addition, he used a
set of life cycle anchor points as critical management decision points. This version was
integrated in a more advanced approach to address software critical milestones (in
lifecycle objectives , lifecycle architecture and initial operational capability). This
integrated win-win spiral model was successfully applied to the DoD’s project named
(STARS) in an effort to solve its risk problems (Boehm, 1996). This approach
incorporated a customized mixture of software process models (waterfall, evolutionary,
incremental, spiral and COTS) to suit different needs in software projects.
 In “Experiences With the Spiral Model as a Process Model Generator” (Boehm and
Belz, 1990) Boehm et al used the spiral model as a framework for eliciting or generating
adequate process models based on five main drivers discussed in the generic assessment
section.

Figure 2.12. Win-Win Spiral Model (Boehm, 1998)

4- Iterative And Incremental Models

 Both iterative and incremental (sometimes called phased development (Graham, 1992)
models have one goal in common. This goal is reducing the cycle time of the
development process. However, they are different in terms of their ways of partitioning
the development work. On the one hand, the incremental model is based on building parts
of the system in each release until the final system is completed. However, the Ada
process model extended this discipline into three dimensions: subsystem increments ,
build increments and component increments as this model is supposed to deal with large
systems (Royce, 1990). On the other hand, in the iterative model the whole system is
developed all in the first release but improved iteratively in each of the following releases
until achieving the most optimized system (Pfleeger, 1998). According to Basili et al
“At any given point in the process, a project control list acts a measure of the distance
between the current and the final implementation “(Basili, 1975).

While Graham (1992) considered evolutionary development is as a type of
incremental development, Pressman (1996) classified incremental development as a
subclass of the evolutionary approach.
 Obviously, prototyping can play a significant role in incremental and iterative
development techniques. Moreover, these methods have much overlap with RAD (rapid
application development) as the later is sharing the same goal in reducing process cycle
time. Indeed, both RAD and prototyping can be used as tools with the support of CASE
tools toward more efficient incremental and iterative process models.
 Furthermore, the iterative approach is the strategic framework for the unified process
model suggested by UML –Object oriented pioneers at Rational Rose Corp. and many of
the software process improvement models as well. Due to their incremental or iterative
nature, these process models are also adopted explicitly by the spiral model where risk is
reduced as each increment or iteration is reviewed and enhanced.
 Clearly, these two process models are inline with project needs in terms of cycle time
reduction. This can create early markets, fix unanticipated problems quickly, train users
in parallel with software improvement, and partition the work of the development team
more efficiently (Pfleeger, 1998). Advantages of incremental development includes also
improved team morale, early solution for implementation problems, reduced risk of
disaster, improved maintenance, control of over-engineering , measurement of
productivity , estimation feedback and smoother staffing requirements.
 According to Graham (1992) problems with the incremental models include hardware
related problems, life cycle problems, management problems, financial and contractual
problems and user developer relationship problems. Adopting incremental approaches
require dealing with a great deal with uncertainty, mastering configuration management,

organizational culture change. It should be also empathized that this approach is typically
a way to manage complicity in large systems.

component 1 component 2 component 3 component 4

component 2 component 3

component 1 component 4

Phase 1 Phase 2 Phase 3 Phase 4

Incremental
Development via

Components

Incremental
Development via

gradual growth of the
system

Two Approaches in Incremental Modeling

5-Object -Oriented based models:

 Object-oriented based process modeling can be found in many forms. One form is
applying traditional process models in conjunction with object-oriented programming.
This form has very little or no impacts on process modeling structure since it uses the
same classical development strategies. A typical example of that is developing a system
using the waterfall process model while implementing the system with C++, Java, Eiffel
or Smalltalk .
 The second form is modeling process life cycles via object-oriented based strategies. In
this form, system modules are class objects that are explored , defined , associated and
aggregated through a vast array of object-oriented analysis , design and implementation
techniques and notations .Examples of this form are components-based process models ,
COTS , UML rational unified software development model and assembly from reusable
components.
 These strategies are gaining more attention particularly in rapid application
development since they boost productivity through reusability. Additionally, CASE tools
for accelerated software development support many of these strategies.

 Another object-oriented approach proposed by Riley (1994) was based on
DRAGOON language. His approach involves the following step-by-step procedure:

1- “Develop object oriented relationship model
2- Develop DRAGOON specification for each class
3- Develop object-behavior models for DRAGOON
4- Develop object-interaction models to analyze the overall process and revise if

necessary.”
 Riley pointed out to the ability of object-orientation to a sound abstract theory in process
modeling. He emphasized on the feasibility of an object –oriented approaches in contrast
to previous functional approaches, considering Fusion’s additional advantages when
applied to process modeling.
 The Unified Software Development Approach proposed by Jacobson at Rational Rose
is based on UML and influenced by Ericsson corporation. The unified approach tends to
cure the ills inherited from previous models. The unified process is use-case driven. ,
architecture centric, iterative and incremental, and has four newly labeled phases:
Inception, elaboration, construction and transition. The five workflows (requirements,
analysis, design, implementation and testing) take place over these four phases adopted
in this Unified process model (Jacobson et al, 1998).

Although object-oriented methodologies have proven to be advantageous in process
modeling, SOFL (structured -object-oriented-formal language) (S. Liu et al, 1998) is an
approach that shows how integration between structured and object-oriented
methodologies .This integration-based approach can probably add more value to a
process model. This approach has also combined static and dynamic modeling. These
integrations aim to develop process models that overcome formal methods problems that
limited their use in the industry.

6- Productivity-Driven Dynamic Process Modeling

While the unified process model was user-driven and strongly influenced by the UML
techniques and requirements management, another approach was introduced
simultaneously with more emphasis on management and software economics. This
approach was firstly developed by Abdel-Hamid (1989) .It recognized the importance of
managerial considerations and factors influencing team effectiveness. This approach
introduced a basic model in software project management from an interactive system
dynamics perspective. Several subsystems were generated as a result of this model. These
sub-subsystems are human resource management, software production, control and
planning. Further experimental testing was made utilizing simulation and COCOMO. The
cost of quality assurance procedures was also an essential element of the overall
framework. Clearly , this model concentrated on boosting productivity in software
development by studying its key drivers such as task management , team effectiveness ,
and quality control.

7- The Cleanroom Model

Work Force
Available

Effort Remaining

Tasks
Completed Schedule

Work Force
Needed

Progress
Status

Human
Resource

Management

Software
Production

Controlling Planning

Cleanroom software engineering is a team-oriented process that is based on statistical
quality control. This makes the development process more manageable and predictable
because it is controlled through quantitative techniques. The strength of cleanroom
software engineering is in writing code modules right the first time and verifying their
correctness before testing. This eliminates the need for expensive defect treatment
processes. The Cleanroom process models “incorporates the statistical quality
certification of code increments as they accumulate into a system. “
 Cleanroom software engineering provides a theoretical framework for engineering the
development process and certifying high-reliability software systems. Cleanroom
facilitates the application of engineering discipline to software development for
organizations. It is defined in terms of 14 processes that implement Cleanroom software
development technology and operations (Linger et al, 1987).1
 The IBM Cleanroom method is a combination between this management thinking and
the mathematical formals methods addressed by Somerville. In fact it is a team approach
to software engineering in which intellectual control of the work is ensured by ongoing
review by a well-qualified small team, use of the formal methods in all the process phases
and statistical quality control of an incremental development process (Trammell et al,
1992

1 Harlan D. Mills, Michael Dyer, Richard C. Linger: Cleanroom Software Engineering, IEEE Software,
1987.

8-The Commercial Off-The-Shelf Model (COTS)

Model Name COTS

Model Evolution -COCOTS (An integration of COCOMO and COTS)
 -CBSE (Component based software engineering)-The generic version of
COTS

Date of Birth - 1972, Bob Costello, the Deputy Director of Defense, coined the acronym
COTS (commercial-off-the-shelf) to describe a shift in military procurement
priorities and practices
-It was used more thoroughly since late 80’s and early 90’s
-(1997-1998) it started to become a major investment at the government and
private levels

Developers Many contributed to COTS evolution
IT drivers Advancement in object-oriented technologies

Model Roots

Business Drivers High degree of system complexity with high demand on rapid application
development

Model definition COTS is the use of Commercial software Components that are bought from a
third party vendor and integrated or composed into a system (Vigder and
Dean, 1997). In COTS systems are built from generic reusable components
outsourced from external resources (or in a more generic approach may be
built-in-house).

Model architecture Integration driven architecture using CORBA , Java Beans, Active X , API
,etc.

Pros 1- COTS experienced vendors are in the market for a long time, which
makes their products more reliable as opposed to in-house
development.

2- Maintenance costs are distributed among all customers since every
component has many users

3- Reusing same COTS components over and over reduce training
costs and expand development teams experience

4- COTS implies faster adaptation to new technologies
5- COTS components are features-rich which makes them responsive

to future changes in requirements

Model Evaluation

Cons 1. No access to COTS source code due to “black box” concept
enforcement in providing components.

2. Evolution of the COTS software is beyond the buyers control
3. Possible incompatibility with other COTS software
4. Functional mismatch can make COTS software integration a

real challenge.
5. The need for frequent updates , maintenance and

troubleshooting from many vendors simultaneously.
6. COTS security is still below standards

Model support Several CASE tools are available for the integrating of COTS components.

Model tailorability Large complex systems and Military applications were the best candidate for
COTS projects. Yet , it is attracting attention today in all types of projects.

Model Future - Vendors are beginning to design products with more
APIs and open interfaces to permit their integration with
other products.
-Integrating frameworks such as CORBA are establishing
mechanisms for product interoperability.
- Products providing application functions (e.g., map
graphics, general ledger) are becoming available.
-Vendors are offering licensing arrangements compatible
with incorporating their product in another product.
-The technology community is beginning to address processes and issues for
COTS-based development.
(Braun,1999)

 Component-based software development is a true example how object-oriented
methodologies impacted software development strategies. An important approach that
emerged from this development trend is Commercial off-the-shelf (COTS) software
development.
 In COTS the role of the developer is to purchase /obtain the right components and
assemble them to build the final product. In today’s markets, COTS software is offered in
various forms from components-based libraries to stand-alone applications.

Traditional versus COTS-based approaches2

 Commercial off-the-shelf (COTS) approach has gained attention recently. COTS
components can be a complete application, an application generator, a problem-oriented
language, or a framework in which specific applications are addressed by parameter
choices (Gentleman, 1997). Integrating COTS with the different phases of the process
model might result in an enhanced development process framework (Fox et al, 1997) or
even a life cycle model (Braun, 1999).
Forrester Research estimates that 70% of European software development will be

component- or COTS based by 2003.3 As recently as five years ago, defense contractors
spent 11% of their budget on outsourcing component and subsystem requirements.
Today, the outsourcing percentage has risen to 70%, and the success of many COTS
suppliers is due wholly or at least in part to this paradigm change within the
defense/military community. Contractor acceptance of the rightsizing trend opened up a
$55 billion market to COTS suppliers.4

2 Lisa Brownsword, Tricia Oberndorf, and Carol A. Sledge, Software Engineering Institute, IEEE
SOFTWARE, July / August 2000.
3 COTS Software Selection: The Need to make Tradeoffs between System Requirements, Architectures and
COTS/Components , (Cornelius Ncube & Neil Maiden)
4 http://www.skycomputers.com/technical/COTS.html

http://www.skycomputers.com/technical/COTS.html

 Activities of the Component-Based Development Approach5

In general a COTS component can take any of these forms :

• Complete application
• Generic service, eg. Database or GIS
• Library
• Subroutine, abstract data type, or
• Application generator
• Problem-oriented language processor
• Framework with plug-ins class

Even though COTS is a component-based approach in software development, a key
distinction from other component-based development strategies is that in COTS
components are usually outsourced as ready to use components and not as internally
developed components or extended from previously developed components.
The following characteristics usually distinguish COTS software development :

- Developed by third parties.
- System developer does not have access to source code.
- You are one of many users.
- Little control over evolution and maintenance of COTS components

5 Brown, Alan W. & Wallnau, Kurt C. "Engineering of Component-Based Systems," 7-15. Component-
Based Software Engineering: Selected Papers from the Software Engineering Institute. Los Alamitos, CA:
IEEE Computer Society Press, 1996.

 . COTS-Based Development Lifecycle Process Model (Christine L. Braun, 1999)

9- Application-specific and Domain Based Models

 Process models that are application-based or domain –specific sometimes require a
specific level of tailorability . For instance, web development life cycle, which belongs to
the sub-software engineering area, recently referred to as web engineering is gaining an
increasing interest among software engineering publications and conferences. . In order
to develop and maintain web sites in a cost-efficient way throughout their entire life
cycle, sophisticated methods and tools have to be deployed (Jung and Winter, 1998).
 A similar category is technology –enabled approaches such as the workflow-based
process model , reengineering process models and CASE tools based models.

9.1--Web-based Development models

9.2- Workflow applications Models

Workflow applications are information systems in which work is coordinated by a
workflow management system. The people dimension is crucial in designing these
applications because of their variety. The basic phases of developing these applications
are: information gathering, business process modeling, and workflow modeling phase.
Several studies have been done so far in this area but they lacked comprehensibility.
Some of these studies aimed at providing reference models for software engineering and
business process reengineering (Weske et al, 1999). Weske et al. introduced a reference
model for workflow application development processes (WADP) in which they provided
a generic model to avoid a number of problems related to workflow projects. However,
they insisted that there is no substitute for knowledgeable managers, skilled developers
and efficient users. They admitted that tailoring this reference model to each individual

project requires more efforts to be made. Their model consists of six phases: survey,
design, system selection, implementation, test and operational phase. They based their
line of reasoning on a number of case studies and proposed a two-dimensional framework
to tailor their model to more specific needs. The workflow experience and problem
complexity were the two dimensions this framework relied upon (Weske et al, 1999).

9.3-Reengineering Model

Reengineering process model is an approach based on business metrics of cost, time
and risk reduction after a dramatic change in existing processes, which should generate
breakthroughs in the final products. Although it has been borrowed from the business
literature (Business process reengineering (BPR)), it was totally based on IT and software
systems as enablers in establishing successful projects .The BPR influenced the software
process modeling literature and some initial reengineering process models were
introduced accordingly. We consider this approach as an overlooked one, not because it
was not addressed but because it was not included in its anticipated location among
process models. . This might be attributed to its lateness in introduction, lack of adoption
or perhaps categorizing it as a technique that might be integrated with other process
modeling approaches
 According to Somerville (1995), software reengineering has three main phases :
defining existing system, understanding and transformation , and reengineering system.
This means “taking existing legacy systems and re-implementing them to make them
more maintainable. As part of this reengineering process, the system may be re-
documented or restructured or even retranslated to a more modern programming
language “ or implemented in a different architectural platform or data will be “migrated
to a different database management system” (Somerville, 1995). Similarly but with a
different process model, Pressman (1996) introduced software reengineering process
model in six main phases that work together in cyclical iterative fashion: inventory
analysis, document restructuring, reverse engineering , code restructuring data
restructuring and forward engineering . However, both authors emphasized on the
importance of automatic techniques to make these models, if applied, cost -effective.
 The following diagram illustrates a business reengineering oriented approach in
software-driven problem solving.

BUSINESS
STATEMENTS

BUSINESS PROCESS
SPECIFICATIONS

OBJECT-ORIEND
REQUIREMENTS

OBJECT
DIAGRAMS

CLASSS
DIAGRAMS

CREATE
BUSINESS
PROCESS

BUSINESS
OBJECT

BUSINESS
PROCEDURES

BUSINESS
DATA

BUSINESS
RULES

IMPLEMENT
BPR

 An Initial Framework For Object Oriented Business Process Reengineering

9.4-CASE Tools Based Models

 Technology-enabled models include models based on automation by means of CASE
tools. While traditional environments were supported by loosely coupled CASE tools that
assist independently each phase of the life cycle, more sophisticated architectures were
lately introduced to provide a mechanism to ensure that tools are used properly and a user
interface that can monitor the actions of project members and coordinate their activities
in an integrated manner (Ramanathan and Sarkar, 1988). This architecture is rule - based
with an artificial intelligence approach. The TAME process modeling approach
represents an outstanding step to integrate process modeling with product metrics along
with the automation capability of CASE tools in a more comprehensive framework
(Basili and Rombach, 1988).
 Integrating experimental data with CASE tools can even make the process model
much more efficient by means of data collection and building a knowledge base
throughout the development process. This new approach has been introduced through the
CAESE methodology where CASE and experiment work in conjunction towards the
software production goal as assessing software product metrics will be more efficient
with the statistical analysis based on experiments accompanied by the high degree of
CASE automation (Torli et al, 1999). The flow of events represented by the cleanroom

development increment life cycle based on formal techniques can be categorized in the
same class (Trammell et al, 1992).
 Integrating good practices has influenced the software process models towards
continuous improvement in an evolutionary cycle. This can be seen through models such
as the capability maturity model, the bootstrap model, the spice model and other process
improvement models (Somerville et al, 1999).

10-Rapid application development (RAD) Models

These models can be classified into six key categories :

1- Agile software development (such as XP , SCRUM and Radical project
management)

2- Concurrent software development
3- Component-based software development
4- Rapid prototyping
5- CASE tools driven software development
6- Automated development based on Math and Statistics (such as cleanroom

software engineering)

11-Human Factors -Driven Models

 Human factors in developing process models have been somehow overlooked in the
previous resources. These factors were indeed impeded implicitly here and there in
previous process models but had attracted more attention recently. Scientists who are
urging consideration of these factors in modeling software processes are emphasizing that
pure technology can never provide a profound model. Whether approaching this issue
from the managerial prospective (Abdel-Hamid and Madnick, 1989) or the cognitive
psychological prospective (Leveson, 2000), problem solving cannot be achieved
efficiently without adopting adequate strategies that are based on correct understanding
of humans and their real needs. Hence, Leveson (2000) stated, “Our representations of
problems have an important effect on our problem-solving ability and the strategies we
use “. Clearly, the whole process model is a sort of problem representation. Furthermore,
another human-oriented approach is the Japanese version of continuous process
improvement (Kaizen) that introduced a strategy for quality enhancement based firstly on
human resources as the most important company asset (Bandinelli et al, 1995).
Aiming to enhance software usability from a user-oriented prospective particularly in the
area of user interface design, behavioral approaches have influenced process modeling as
well (Chase et al, 1994).
 According to Chase et al, developing a model of behavioral representation techniques
involve three dimensions scope, content and requirements. Scope indicates the activities
within interface development process that may utilize the technique. Content stands for
the interaction components being represented using the technique including user
definition, cognitive processes, main-line action task, feedback display, etc.
Requirements stand for the qualities of the representation including facility and
expressiveness (Chase et al, 1994). Clearly, human centered specification reflects the
interdisciplinary impacts of cognitive engineering, a term used to denote the combination
of ideas from systems engineering, cognitive psychology and human factors as for their
capabilities and limitations of the human element in complex systems (Leveson, 2000).

