
Surfing the Net for Software
Engineering Notes

Mark Doernhoefer
The MITRE Corporation

7515 Colshire Dr.
McLean, VA 22102
mdoernho@acm.org

Agile Surfing
Agile methods are one of the most controversial topics in the
software development community today. The homepage for this
year’s Agile Development Conference remarked that one of the
purposes of this year’s conference was to dispel the notion that
agile development methods are “a bunch of hot air”. And
indeed, the amount of hype surrounding this new approach to
writing software would lead one to believe that agile methods
are long on promises and short on rigor. Even some of the terms
surrounding agile methods; Extreme Programming (XP),
Crystal, Scrum, etc., seem like they were developed by an
advertising agency instead of a software process improvement
group.

As I recall there was a similar amount of hype surrounding the
introduction of object oriented software development. For those
of us dutifully decomposing functions into data flow diagrams
using structured analysis/structured design under the waterfall
development cycle, the thought of a bunch of objects running
around our systems with attributes and methods seemed wacky.
Early OO adopters were advised that they could easily locate the
objects in their systems by highlighting the nouns in the
requirements specifications. Over the years, the object-oriented
approach to development was refined, UML
modeling matured, OO CASE tools became
available and today object-oriented software
development has largely replaced the old
SASD methodology. Could agile methods be
the replacement for object-oriented methods?

Kent Beck’s book, Extreme Programming
Explained: Embrace Change, published in
1999, launched the agile revolution. Since that
time, Extreme Programming (XP) has gained a
huge following in the web development
community. Programmers found they were
free to design on the fly and the XP
philosophy of continuous testing was rigorous
enough to produce good quality results for
web apps. There was little need for program
documentation because in the dynamic web
environment, applications were changed
frequently to keep fresh content on the web
site. The programmers didn’t need to
document code or design since the team was
immersed in the code and knew it by heart.

The Extreme Programming approach fit the bill in this dynamic
environment.

As more development teams experimented with XP, they added
additional techniques and the family of agile methods started to
grow. Unlike the other methods for software development, agile
methods include a fair degree of sociology in their approach to
development. In fact, the first principle of the agile manifesto
states the goal of emphasizing individuals and interactions over
processes and tools. Other agile principles require projects with
no overtime so as to not burn out the development team. Authors
such as Tom DeMarco have previously recognized the role of
people in the development process, but the agile approach
integrates the people processes into the agile processes to a
much greater degree than any previous methodology.

The agile developers realized that the agile approach might not
be suitable for all types of development. Early adopters are
contributing experience reports and fine tuning some of the agile
methods. Unlike the other methodologies that claim to work for
all types of application development, agile methods advocates
are finding that the agile approach works better for certain types
of projects. There has been a lot of effort directed to identifying
the characteristics of applications development that lend
themselves to the agile approach and even more effort to identify
those situations where agile methods may not be the best choice.

So all you old process practitioners keep an open mind, you’re
about to learn something. XP and agile methods have been
around long enough to garner some real successes. You’ll be
interested in the case study links on the web sites listed below.

You agile “old hands” will find a lot of new content on the pages
below. Since the agile approach is constantly being refined,
chances are you’ll find some new articles of interest.

ACM SIGSOFT Software Engineering Notes Page 20 September 2004 Volume 29 Number 5

Before we start our surfing safari, let me apologize in advance
for mixing the terms process, practice, methodology, technique
and approach. I know that each term is different and that each
has a precise definition in the engineering community. I will be
using all of these words interchangeably without respect to their
exact meanings. It’s called poetic license and I do this to keep
the text from becoming repetitious. And, since this is not a
refereed journal, I can get away with it.

The New Methodology
http://www.martinfowler.com

Martin Fowler’s web site is a good place to start talking about
agile methods. His home page at the URL listed above has a
collection of updates on various topics in software development
with an emphasis on agile development methods. Each item is
an in depth discussion of the topic, either as a magazine article,
or a set of links to other pieces.

I’ve placed this site first due an excellent article entitled “The
New Methodology”. This older article was not listed on the
home page, but can be located through the articles page or
directly at:
http://www.martinfowler.com/articles/newMethodology.html
“The New Methodology” offers a comprehensive look at many
of the tools and techniques used in the agile approach. It’s a
great place for a beginner to start learning about agile methods.
An international resource, the article and the underlying pages

have been translated into French, Russian, Japanese, and several
other languages.

Martin Fowler is a prolific author who offers reasoned, practical
advice to those actually writing applications. Although he uses a
lot of the XP and agile method buzzwords, you won’t find any
academic discussions of the science behind agile methods. This
is straightforward, get-it-done advice. This practical approach to
programming is characteristic of the agile movement.

Agile Methods Wikipedia
http://en.wikipedia.org/wiki/Agile_Methods

The Wikipedia is quickly becoming a standard reference site for
just about any topic imaginable. For those not familiar with the
site, Wikipedia, is a free online encyclopedia where the
encyclopedia citations are open source. Wikipedia currently
holds over 300,000 encyclopedia articles.

The agile methods Wikipedia article does not go into great depth
on the agile practices, but has some nice, concise definitions of
the agile practices. If you are looking for a quick answer to an
agile methods question, check it out. And, if you are an agile
methods practitioner who wishes to contribute an item to
Wikipedia, stop by. At this writing there were a number of
empty placeholder links awaiting contributions by subject matter
experts.

ACM SIGSOFT Software Engineering Notes Page 21 September 2004 Volume 29 Number 5

The Agile Manifesto

http://agilemanifesto.org

Now that you have some idea of what agile methods are all
about, surf by the Agile Manifesto page to see how and why this
new approach to software was developed. The brief manifesto
sums up the rationale behind agile software development:

We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.

The term “manifesto” implies a radical statement and, as you
can see from the screen shot, the manifesto was created by a
radical group of programmers standing around a whiteboard. For
a traditional, process-based developer like myself, this is

dangerous stuff. How can you create quality software when
you’re writing the tests at the same time you’re writing the
code? Whoever heard of trusting a software development to
interactions between individual developers instead of
documented processes written in a software development plan?
If we spend all our time responding to change, how can we ever
complete that plan? And how can you possibly maintain
software without the accompanying comprehensive
documentation? Read on.

The manifesto site also has pages that describe how the
manifesto came to be and mini-biographies of the folks
involved. The agilites, as they are sometimes called, come from
a wide variety of backgrounds, but are now consultants,
educators, or mentors, all serious about building good software
quickly. The site has a feature to allow you to sign on to the
manifesto. I don’t exactly know what that means other than
your name will be posted to the world as a signatory to the
manifesto. There’s no count of names, but well over a thousand
people have signed on to the principles of agile software
development.

If you visit the manifesto page, make sure you check out the link
describing the genesis of the manifesto, “About the Manifesto”
by Jim Highsmith. The description of the meeting at a ski lodge
in Utah provides great background to the agile movement.

ACM SIGSOFT Software Engineering Notes Page 22 September 2004 Volume 29 Number 5

Extreme Programming
http://www.extremeprogrammi
ng.org

One of the most important core
processes (and perhaps the
most controversial) in agile
development is Extreme
Programming. This approach
to software development uses
pairs of programmers who
typically write unit tests at the
same time they write the
application code. I am greatly
oversimplifying how XP
works, so I would encourage
you to visit the XP site to get
the full story. The subtitle for
the XP site is “A Gentle
Introduction”, and that’s
exactly what it is. All of the
core XP practices are laid out
in simple diagrams to help you
navigate the overall structure
of the methodology.

A successful XP project requires a shift in programmer attitude.
As you navigate through the XP site, this gentle introduction
will also talk about the rationale and motivation behind the
various XP techniques. Most older methodologies focus on the
mechanics: flowcharting, modeling, or code constructs. Because
the agile focus is on “writing good code” XP places an emphasis
on the social aspects of the software both from the user and
developer perspective. It all sounds a bit “touchy-feely”, but
another goal of agile methods is to produce software without

The Agile Alliance
http://www.agilealliance.org/home

Similar to the manifesto site, the alliance is where the manifesto
signatories hang out, trading ideas and best practices with each
other. Inasmuch as agile methods are still being developed and
tweaked, this forum for practices and approaches is where the
action is. For those just stating out, there is a “Roadmap”
section. Annual membership to the
alliance is $100, $40 for students.
Membership entitles you to receive the
Alliance newsletter and participate in the
various Alliance programs.

The Agile Alliance site features a great
collection of articles, grouped by topic
area, on various aspects of agile
development. The articles vary from case
studies to very technical discussions of
specific implementations of the agile core
practices. The collection is kept current
with the frequent addition of new articles.
Overall, it’s a great resource for anyone
involved with agile development.

In addition to the collection of articles, the
Agile Alliance site also offers current
news items (the news is also available as
an RSS feed), user group information, and
information on agile development
conferences.

ACM SIGSOFT Software Engineering Notes Page 23 September 2004 Volume 29 Number 5

killing the programmers. (See Ed Yourdon’s Death March for
more on killing programmers.) Your XP experience should be
pleasant as well as effective so the XP site talks a lot about
attitude and team building in addition to introducing you to the
overall XP approach.

Scrum
http://www.mountaingoatsoftware.com/scrum

Scrum is a process that provides the day-to-day ground rules for
the inner workings of the development team. Scrum formalizes
programming team dynamics using funny names for the process
procedures. For example, the month long development
iterations in Scrum are called “sprints”. So every month, the
development team sprints to a new software release.

During the sprint, the development team holds a morning
meeting, the daily Scrum, to set the work program for the day.
At the Scrum, each participant is known as a chicken or a pig
depending upon his or her level of involvement in the program.
These roles are derived from the old joke that when preparing a
bacon and egg breakfast, the chicken is involved, but the pig is
totally committed. The pigs are required to attend the daily
Scrum and are the only ones permitted to speak at the Scrum.

Had enough yet? No, this isn’t a joke; this is an actual agile

methodology that is gaining popularity for its success at turning
out quality software in a short period of time. As you can see
from the screen capture, there’s a lot more to the Scrum and the
supporting processes. Check out the Mountain Goat site for the
full story. You’ll find all you need to know to get started with
your own Scrum.

Crystal
http://alistair.cockburn.us/crystal/index.html

Crystal introduces elements of sociology into the agile methods.
As I mentioned above, the agile approach is remarkable in that
the human interaction of programming and development teams
play an important role in the agility. This collection of human
factors in the development process has been collected in Crystal.
The primary Crystal proponent is Alistair Cockburn. Cockburn
calls Crystal “a family of shrink-to-fit, human-powered software
development methodologies”.

The Crystal family of methodologies focuses on the people
participating in the development and the interactions between
them. Over years of observing and participating in
developments, Cockburn noticed certain behaviors in the
programming team that are characteristic of good development
teams and other behaviors that detracted from the success of the
project. Cockburn has cataloged these behaviors and describes

ACM SIGSOFT Software Engineering Notes Page 24 September 2004 Volume 29 Number 5

over 10 years. Now in Version
4.2 the DSDM framework is
licensed for use on a personal,
developer, or project basis.
Special licenses are available
at reduced cost for students
and charities. This is probably
why DSDM hasn’t gained a
great deal of popularity. The
licenses and annual renewal
fees can be quite costly.

Refactoring

how to select the appropriate practices from the collection to
provide the best possible set of methods to leverage the abilities
of the team.

If you happen to stop by this site, don’t miss the articles on
“Software Development as a Cooperative Game” and “Software
Development as Community Poetry Writing”. These are two
interesting articles that every developer who has been involved
in a programming team will
identify with.

Dynamic Systems
Development Method
(DSDM)
http://www.dsdm.org

DSDM is a flexible methodology
that was derived from the work
done with Rapid Application
Development (RAD) methods.
A single RAD approach was
never codified and RAD grew to
mean different things to different
people. DSDM took those
independent RAD techniques and
placed them in an industry
standard framework to yield a
single consistent application
development approach.

The resulting DSDM framework
has been in use and refined for

://www.refactoring.comhttp

own personal

aintains the refactoring.com

de,

Refa ure for an agile

In addition to his
site, Martin Fowler also
m
site. He defines refactoring as
follows:
“Refactoring is a
disciplined technique
for restructuring an
existing body of co
altering its internal
structure without

changing its external behavior.”
ctoring is a very important proced

development. Since there is no initial design or planned
architecture, a continuous design process is used to develop the
application. Under this approach, the application architecture
evolves in response to the evolving requirements. Complex
requirements identified late in the coding cycle may dictate the

ACM SIGSOFT Software Engineering Notes Page 25 September 2004 Volume 29 Number 5

need for massive architectural changes to the software. Here’s
where the agility in the development process comes in.

hose critical of agile development point to refactoring as one of

.com. On Fowler’s

eb site you can find lots of great

Workshops
gile

w

T
the weaknesses of the agile approach. Since you don’t alter the
external behavior when you refactor, the only benefit of
refactoring is to improve the design. It’s time wasted because
you didn’t take the time to
design the system before you
started coding. This is
analogous to the exercise we
when through at the Y2K
rollover. Lots of people spent
lots of money just to make sure
their applications worked the
same on Jan. 1, 2000 as they did
on Dec. 31, 1999. The agilites
respond to this complaint by
pointing out that many
traditional developments are
required to refactor (or redesign)
due to changing requirements or
an improper initial design. So
the agile refactoring isn’t that
big a deal. In fact, since
refactoring is an established
agile process, agile developers
are much better at effecting
design changes than engineers
using a traditional approach.

So that brings us back to
refactoring

sources on refactoring, books, links,
white papers, doctoral dissertations,
even people who can help out with
refactoring. The site is a companion
to Fowler’s book, Refactoring:
Improving the Design of Existing
Code, so in addition to news and
tools, you can also find the graphics
and code illustrations amplifying the
book.

The Fraunhofer Center
e
http://fc-md.umd.edu/projects/A

The Fraunhofe

r Center for

t the University of Maryland hosts
Experimental Software Engineering
a
current research programs in a
number of new and innovative
software engineering processes and
techniques. Their project on agile
methods has sponsored three
eWorkshops where leading

proponents of agile development discussed various topics
surrounding the new methodology. The Center has published
the transcripts of those workshops along with summaries of the
issues discussed during each session. I recommend reading at
least the summaries if not the entire text of each workshop.
Although there is disagreement among the experts, many of the
criticisms of agile methods are discussed and answered with

ACM SIGSOFT Software Engineering Notes Page 26 September 2004 Volume 29 Number 5

practical advice on how to implement this new approach to
development.

Topics included in the eWorkshop discussions are:

s for safety-critical software

an e oversial topics. The discussions provided

The Official Agile Modeling Site

• Project size
• Refactoring
• Agile method
• Levels of testing
• Documentation
d s veral other contr

insight on both sides of the issue; how agile development
supports or fails to support each topic area. I felt many of the
concerns of “traditional” methodologists (myself included) were
answered in these workshops. However, you should read the
monologues and decide for yourself.

http://www.agilemodeling.com

uthored by Scott Ambler, one of the original signers of the

mbler’s essay on agile documentation at:
Documentation.htm

A
Agile Manifesto, the Agile Modeling (AM) site provides an
introduction to some lightweight modeling techniques that
support agile methods. As the site says, “Agile Modeling (AM)
is a collection of values, principles, and practices for modeling
software that can be applied on a software development project
in an effective and light-weight manner.” In addition, the site

discusses how an agile approach can be combined with other
techniques, such as Model Driven Development, and also
provides guidance for the use of CASE tools in an agile
environment.

A
http://www.agilemodeling.com/essays/agile

The Pressman Downloadable Reference Library

answers the “you don’t document” criticism. Don’t expect to
find a description of state-charting, data flow diagramming or
UML notation. Instead, you’ll find practical advice on what
needs to be documented and how to create useful documentation
as opposed to useless piles of paper. For example, Ambler
suggests focusing on content rather than format and writing
documentation for a specific audience. A few years back I was a
programmer in a large multi-year development program. We
were sure that the documentation we wrote to accompany the
code would never be read by anyone. The standard joke in the
project team was that we captured our documentation in write-
only memory. The AM site will show you how to avoid this
pitfall.

http://www.rspa.com/reflib/AgileDevelopment.html

The website accompanying the new edition of Pressman’s
excellent book, Software Engineering: A Practitioner’s

ACM SIGSOFT Software Engineering Notes Page 27 September 2004 Volume 29 Number 5

Approach, provides a collection of agile development articles
beginning with XP and moving into agile processes and agile
modeling. Many of the links you’ll find here are also linked
from the other sites mentioned above, but Pressman brings them
all together in one spot organized by topic. Furthermore, if you
back up to the index at:
http://www.rspa.com/reflib/Index.html

oviding links supporting

wanted to mention this site because Pressman is not one of the

n Conclusion
on is that despite the glitz, these agile folks

do have a few concerns about agile methods. For a larger

here are examples of successful projects using any of the past

right thing at the right time.

you’ll find the full reference library pr
the chapters of Software Engineering.

I
signatories of the Agile Manifesto nor is he a member of the
Agile Alliance. In fact, the Pressman book, now in its sixth
edition, is a classic reference for traditional structured software
methods. Inclusion of agile methods in Pressman’s book is
acknowledgement that agile methods have matured to the point
where they form viable, valuable alternatives to the other
methods discussed in the book. You gotta love it, Chapter 2
discusses the SEI CMM and Chapter 4 covers Agile
Development. Talk about oil and water…

I
My simple conclusi
are onto something. Like any process or methodology, an agile
approach can be compromised with bad decisions, but given the
nature of software development and the wide range of projects,
it seems clear that no one approach to building software fits all
situations. Several of the web sites mentioned above describe

the types of projects that work well under agile methods. For
those projects, the agile approach provides a lightweight,
systematic approach to building applications quickly. Sure beats
sitting in front of a keyboard and flailing away.

I
development, there does not seem to be a good way to
coordinate application-wide strategies. For example, how do
you communicate the standard approach to functions such as
security, performance monitoring, and fault localization, to all
developers across a large team? Developers must have some
discipline (and smarts) before they begin an agile development
otherwise each refactoring could become a nightmare. There are
techniques at the agile methods sites that address these concerns,
but after seeing a number of traditional, highly process driven
approaches yield poorly designed and badly documented results,
it would be nice if the agile methodology provided additional
guidance to influence developers to do the right thing.

T
or present methodologies. I believe that any approach can work
if you plan your development in advance and adjust your
methods in response to specific issues raised during the course
of development. Agile methods seem to address the major
complaint against the “traditional” methodologies, the lack of
responsiveness to requirements changes. With rapidly changing
web-based applications, requirements change has become a way
of life. Given this reality, the agile approach just might be the

ACM SIGSOFT Software Engineering Notes Page 28 September 2004 Volume 29 Number 5

