
The Impact of Agile Methods on Software Project Management

Michael Coram and Shawn Bohner
Department of Computer Science

Virginia Polytechnical Institute and State University
Blacksburg, Virginia 24061
{mcoram, sbohner}@vt.edu

Abstract

As more and more software projects engage Agile
Methods, there are emerging patterns of success and
failure. With growing adoption of Agile Methods,
project managers increasingly need to understand the
applicability to their projects and factors that drive key
project performance characteristics. While some
organizations affirm that Agile Methods solve all their
problems, few have shown consistent success over a
range of typical software projects. Agile Methods have
advantages, especially in accommodating change due
to volatile requirements. However, they also present
concomitant risks with managing the many dependent
pieces of work distributed across a large project. Use
of Agile Methods therefore presents a set of tradeoffs.
This paper examines the impact of Agile Methods on
the people involved in a project, the process under
which a project is developed, and on the project itself
in an attempt to allow project managers to evaluate
the applicability using an agile method.

1. Introduction

Software engineering, as a discipline, confronts
two key challenges that separate it from other
engineering disciplines. Software, a conceptual and
often intangible product, changes and evolves at a
much higher rate than integrated circuits or steel.
While software is changeable, there is an increased
cost the later in a project lifecycle the change occurs
[1]. This is true to a lesser degree in tangible products
since measurable tests of the requirements and design
can be more readily applied. Recognition of this fact
has lead to the emergence of a set of Agile Methods
that embrace change and manage the related risks [2].

Many such Agile Methods have been introduced
over the last decade, including eXtreme Programming
(XP) [2], SCRUM [3], and Dynamic System
Development Methodology (DSDM) [4]. While these

methods differ in their specifics, they share a common
goal of enabling teams to more rapidly respond to
change. As changes are costly to accommodate later in
the project [5], the ability to respond rapidly to change
reduces project risks and their costs [2].

While Agile Methods are effective in some
contexts, large and complex software products often
require systematic discipline with the requisite process
overhead to ensure success. The challenge for
managers is to determine whether an Agile Method is
appropriate for a given set of project activities.
Concomitantly, addressing the risks involved with
their use warrants attention. All methodologies have
risks, and understanding those risks and finding ways
to monitor, mitigate, and manage those risks is an
important aspect of software project management.

This paper examines the impact of Agile Methods
on software project management to illuminate some of
the strengths and weaknesses so project managers can
make more informed decisions. We present the impact
in terms of People, Process, and Project [6].

2. A Brief Look at Agile Methods

The emergence of several Agile Methods over a
given span of less than a decade is evidence that the
principles that they espouse warrant examination. We
briefly present three key Agile Methods to provide a
flavor of the principles presented in these different
approaches. We then tie them together in discussing
their convergence in the Agile Manifesto [7].

2.1 Extreme Programming

Perhaps the most recognizable Agile Method,
eXtreme Programming (XP), has the overriding goal
“to get the project at hand done.” No fan fare, no
magic bullets – just apply a series of principles that
work. The life cycle of XP consists of five phases:
Exploration, Planning, Iterations to Release,
Productionizing, Maintenance, and Death. [2]

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

The Exploration phase typically takes a few weeks
to a few months for customers to provide requirements
for the first release. At the same time, the project team
becomes familiar with the technology, tools, and
practices they will use on the project.

In the Planning phase, the project team spends
several days working with the customer to prioritize
the capabilities needed for the first release. The
developers estimate effort required and the team lead
draws up a release schedule not to exceed two months.

The Iterations to Release phase goes through
several iterations to produce the first release. Each
iteration takes one to four weeks, and at the end of
each, the functional tests are executed. Completion of
the last iteration marks ready for Productionizing.

In the Productionizing phase, the project team
conducts additional performance testing and checking
to ensure the release meets the customer requirements.
New changes may be introduced here and the decision
must be made whether they should be included in the
current release. If they are not placed in the current
release, they will be recorded for later implementation
in subsequent releases. This phase concludes with the
release delivered to the customer.

In the Maintenance phase, the team produces new
iterations of the software product to implement
changes and new feature requests raised in the
previous phase. These include corrective, perfective,
and adaptive changes incurred during maintenance.

As the software approaches obsolescence, and
customers have fewer feasible features to implement,
the Death phase entails completing all necessary
documentation and the disposition the system is
planned. This phase occurs when the value proposition
for evolving the system further no longer exists (too
expensive to change and low investment value).

2.2 SCRUM

 SCRUM [3] development involves several
environmental and technical variables that are likely to
change during the process. SCRUM concentrates on
how teams can be organized to produce software in a
constantly changing environment. Modeled after the
game of Rugby, the SCRUM life cycle consists of
three phases: Pre-game, Development, and Post-game.

In the Pre-game phase, there are two sub-phases:
Planning and Architecture/High-level design. Planning
entails defining the system based on a Product Backlog
List (updated often with features and modifications)
which contains all the currently known requirements.
These are prioritized and the effort needed is
estimated. In the Architecture sub-phase, the design is
elaborated and refined based on the backlog list.

In the development phase, iterative cycles of
development called “Sprints” are executed to develop
new functions and enhance the system. Each Sprint
includes: requirements, analysis, design, evolution and
delivery. Each Sprint spans from one week to one
month. Three to eight Sprints are executed in the
development process before the system is completed.

The post-game phase concludes the effort and
delivers the release with no additional features or
modifications. Unlike XP, there is no specific phase
for disposition of the system.

2.3 Dynamic System Development Method

One key aspect that distinguishes the DSDM
approach is that it fixes time and resources first and
then adjusts the amount of functionality accordingly.
This resources-first process consists of five phases:
Feasibility Study, Business Study, Functional Model
Iteration, Design and Build Iteration, and
Implementation. The last three phases are iterative and
incremental – restricting iterations within time-boxes
(pre-defined periods of time, where the iteration must
end within the time-box).

In the Feasibility Study phase, the project is
assessed, and the decision on whether or not DSDM is
appropriate for the effort. A feasibility report and a
development plan are produced over a few weeks.

In the business study phase, key characteristics of
the business and technology are assessed culminating
in a system architecture definition and an outline
prototyping plan. The architecture definition is the
initial version of the system definition and it may
change as the project proceeds. The prototyping plan
outlines the prototyping strategy and the configuration
management approach.

During the functional model iteration phase, the
project evolves through functional iterations where
each iteration involves some enhancements and the
increments are directed toward the final system. This
phase entails four products that reflect the process:
prioritized list of functions, functional prototype(s)
review documents, non-functional requirements and
risk analysis of further development.

The design and build iteration produces the system
that meets the minimum set of requirements and iterate
the system based on the customer’s comments.
Systematically, through a series of iterations and
increments, the software is elaborated and refined in a
consumable form for the customer to review.

In the implementation phase the system is
formally transferred to the actual product. The system
is delivered to the customer and any subsequent
increments are planned.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

2.4 Agile Manifesto Ties It Together

The “Agile Manifesto” provides a good overview
of the intent of Agile Methods [7]. The following
values express the tenor of the principles employed:

individuals and interactions over process and tools
working code over comprehensive documentation
customer collaboration over contract negotiation
responding to change over following a plan

In each of these values, the Manifesto is not saying
that the second item is not important, just that it is less
important than the first item.

Software is inherently challenging because of its
constant change. Processes and tools cannot
accommodate all of these changes, so people have to
pick up the slack. Valuing people over process allows
for more creativity in solutions. It implies that even the
best process cannot compensate for the shortcomings
of individuals [9].

Documentation, while valuable, takes time to
write and maintain. However, it is less valuable than a
working product. While some Agile Methods promote
prototyping (e.g. Adaptive Software Development [9]),
others encourage building simple, but completely
functional products quickly as possible (e.g. XP [2]).

Customer involvement is promoted in all agile
methods. A customer representative is expected to be
available and to be “committed, knowledgeable,
collaborative, representative, and empowered” [11].
Allowing the customer to use the product quickly is a
form of customer collaboration. It also allows the
customer to change his or her mind. Thus, instead of
writing contracts, which would then need to be change,
the customer instead is encouraged to actively
participate in the development effort.

Finally, responding to change is considered more
important than dogmatically following a plan because
a plan is only as good as when it was initially written.
If things change, then the plan must as well. But,
changes can often happen faster than the plan can be
modified. This is not to imply that Agile Methods
assume a “hacking mentality” where code is just
written without consideration of any plan. Instead, it
means that any plan must be lightweight and easily
modifiable. The “plan” might simply be a set of post-it
notes on a whiteboard (as is used in SCRUM [12]).

Supporting these four values leads to some
commonalities between the various Agile Methods.
Instead of discussing the various differences and
nuances of each methodology [13], this paper
examines their commonalities from the perspective of
the project manager. There are six common features to

the various Agile Methods:1 1) collaboration, 2) code
reviews, 3) small teams, 4) short release schedules, 5)
time-boxing, and 6) constant testing.

All Agile Methods are highly collaborative, both
inside of the development group and outside of it.
Agile Methods rely on informal communication rather
than voluminous documentation to rapidly spread
information throughout the team and to other
stakeholders. Without a highly collaborative
environment, any Agile Method is doomed to fail. This
means that a primary responsibility of the project
manager is to ensure a highly collaborative
environment. The project manager must be more of a
coach and mentor than a dictator [13].

Agile Methods also encourage, if not require, code
reviews. Code reviews allow for dissemination of key
information. For example, in XP, code reviews are
continuous through pair programming where two
developers share a single computer [2].

Agile Methods also encourage small teams and
small numbers of teams per projects. This ranges from
a single team of three to sixteen developers on XP to
up to six teams of two to six members on DSDM [13].
Small teams are required to foster collaboration, are
more likely to require less process and planning to
coordinate team members’ activities.

Agile Method Release schedules can be as short as
two weeks or as long as six months [13]— SCRUM
even fixes the release schedule at thirty days [5]. At the
end of each release, a functional product is released to
the customer that allows for the product to be
evaluated and for changes to be made in the priorities
of features to be added to subsequent releases.

In time boxing, the release length is fixed but the
features are not. This is the reverse of the “traditional”
development mentality where the features are fixed
and the delivery date flexible. Time boxing helps focus
the customer and reduces gold-plating and scope creep.

To offset the potential for short releases to
significantly degrade product quality, Agile Methods
put a high degree of emphasis on testing the product
throughout its lifecycle. The notion of test-first offsets
the risks of a hacking mindset of just writing the code.

Agile Methods require integration testing
throughout the development process. This testing must
be automated with daily builds and regression tests to
ensure all functionality works [13]. XP, DSDM, and
SCRUM also include specific user acceptance testing
at the end of a time-box, or even (with DSDM)
concurrent with development [13].

1 Not all agile methodologies have all six characteristics. SCRUM
does not specify a development process and therefore does not
explicitly require code reviews [9].

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

3. Impact on Project Management

While the ideas and intent behind Agile Methods
are by and large good, they have impacts on the
people, process, and project elements of an effort. We
examine some of these impacts to determine whether
an Agile Method can and should be applied to a
project, given its requirements, available staff, and
external factors such as business and legal constraints.

3.1 People

There can be a range of people involved in a
software effort – developers, testers, project leaders to
name a few. There is often a customer and an end user
who wants the resulting product. There are also
executive managers (business executives and directors
of the development shop), who are interested in
budgets and returns on investment, and human
resources. Each of these has a stake in an agile project.

3.1.1 Developers

Perhaps the largest impact of Agile Methods is on
the Developers. Agile Methods depend on strong
developers – they must be amicable, talented, skilled,
and able to communicate well [1]. Developers must be
willing to work as a team, able to handle constant
change, and resourceful enough to solve problems.

Agile Methods are very lightweight methods, not
affording strict guidelines and processes for developers
to follow. Hence, they do not accommodate weaker
developers well. Yet, skilled technology workers are
often a rare commodity. This is a management risk as
some developers may not fit in this Agile environment.

Table 1. Boehm & Turner’s developer levels [14]

Level Characteristics
3 able to produce solutions in unprecedented

situations
2 able to tailor solutions to fit new, but

precedented situation
1A solid developer able to implement

functionality, estimate effort, & refactor code
1B able to implement simple functionality,

execute tests, & follow directions
-1 unwilling or unable to work in a collaborative

environment

The “-1” level of developer depicted in Table 1,
would be challenged in an agile environment. Even
“1B” developers consume resources in “hand-holding”
[15]. Hence, the top three levels make up the core of
the agile development team. Boehm and Turner

suggest level “3” developers may not be needed for all
projects, depending on how unprecedented it might be.

Given the need for a high level of expertise, Agile
Methods may be difficult to employ in a traditionally
staffed organization. Highly skilled staff are always in
demand, and without accommodating 1B developers, it
may be difficult to build a long term human capital
strategy. This is just one reason that long term projects
present a significant risk for Agile Methods.

3.1.2 Testers

The impact of using an Agile Method on the
testing (or quality assurance) organization hinges on
the shorter development cycles where testing occurs
throughout the development process [15]. Testers must
work closely with the developers as code is being
written. In Agile Methods such as XP, tests are
changed before code is modified by the developers and
the role of a tester is significantly reduced [2]. Testers
focus on system and functional tests as more of an
independent validation and verification role.

Testers may need to be more capable as
programmers to automate their system and functional
tests and incorporate them into the automated testing
framework. This may represent a different skill set.

The project management challenge is to reallocate
testers that no longer fit into the Agile group and find
testers with appropriate development/testing skills.
This represents an opportunity for novice developers
(level “1B”) to start, and gain system and Agile
Method expertise. Such an approach requires one more
experienced developer (or experienced test manager).

3.1.3 Project Leaders

There are two key Project Leader roles in software
development – project managers and team leads. Each
has a diverse set of challenges as management under
an Agile Method differs from other methodologies.
This distinction is well characterized as leading people
and managing process resources.

Since Agile teams involve experienced staff with
sizeable responsibility, a mentor or coach leadership
approach is most effective. Team leads must be willing
to enable members to take initiative. Leadership is
done via collaboration rather than command and
control type leadership [1]. This can represent a
cultural shift for some as they must be willing to share
decision making authority [8]. The job of a team lead
is to facilitate the team into making decisions [2].

In contrast, project managers in agile processes are
responsible for tracking progress and making business
decisions. Project managers have a larger adjustment

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

than team leads since schedules and plans are far less
important under agile methodologies. The emphasis is
placed on responding to change rather than following a
specific plan. This presents a challenge as they are
usually called upon to detail the status of the project.

Project managers also have a much more involved
role. In SCRUM, for example, the project manager
meets with the team daily and leads the daily SCRUM
[1]. Frequent/short meetings with the team are the
norm for the Agile team [15]. Project managers are
also more involved with the customer collaboration,
instead of usual focusing on defining deliverables and
contracts. If the project manager considering an Agile
Method is not capable or does not want such a role,
selecting an Agile Method may not be appropriate.

3.1.4 Customers

The impact of Agile Methods is to have customers
much more involved than usual Methods. Customers in
more traditional methodologies may be involved at the
inception of the project – helping define requirements
and contractual obligations – and at the end of the
project with alpha, beta, and acceptance testing.
Customers in Agile Methods are instead involved
much more frequently and with more influence. Many
Agile Methods assume, or at least highly recommend,
a full-time customer presence on site working directly
with the development organization [2][11]. Finding a
customer willing to be this involved can be difficult.
Commercial software companies may find customers
unwilling to be involved. Startups may find customers
are unknown as the market has yet to be defined. The
availability of customer representatives must be
considered when engaging the use of an Agile Method.

Merely having a customer representative available
is not sufficient. They must be “committed,
knowledgeable, collaborative, representative, and
empowered” [11]. They must know what is required
for end users. Also, since choices must be made about
what features will be in what release, the representative
must have the authority to make such decisions. Such a
customer representative may not be available for all
projects; hence Agile Methods may not be appropriate.

3.1.5 Executive Management

As with selecting any new organizational process,
executive management support is essential [9]. For
Agile Methods, this is particularly challenging as
Executive managers are risk and opportunity focused –
reluctant to induce risk without visibility. To justify
expenditure, they want committed delivery dates for
specific functionality, progress on tasking, and detailed

schedules and plans. Agile Methods represent a major
cultural change for them. With little documentation to
track progress, features in a given release can change
rapidly as the Agile process proceeds on-course.

Moreover, estimation of cost for a project specific
function set is difficult under Agile Methods. Since
requirements are not fixed, there is no way to know a
priori what will be in a finished product and therefore
when it might be finished. Executive management is
faced with not being able to guarantee delivery dates,
cost, or functionality [15] – a situation that is
antithetical to most management approaches. This may
be an untenable situation for management and prevent
the adoption of an Agile Method in the organization.

The key for a project manager is to convince
executives that Agile Methods will deliver faster and
with better quality. If executive management is willing
to give it a try, the success rate of projects using Agile
Methods will determine its continued usage. For those
project managers that build the trust with executive
management to apply Agile Methods initially in
appropriate projects, and win their confidence, the
payoff for many projects can be high for the enterprise.

3.1.6 The Team

Since Agile Methods rely substantially on
collaboration and communication, the team is key for
success. A single strong-willed developer, developers
who do not work well together, a customer who
doesn’t engage with the team, each could destroy the
collaborative nature of a group. The team chemistry is
of represents a significant risk for the Agile project.

Turnover is another significant personnel factor to
be considered with an Agile team. Without formal
documentation, high turnover on a project can lead to
loss of critical knowledge. While this can be mitigated
by code reviews and having developers rotate working
on different functional areas, the loss of a significant
member of a team can still be catastrophic. The project
manager must consider this risk when examining
whether the team (and the organization) is right for an
Agile Method. Recognizing a key tenant for XP is
retaining relevant knowledge by retaining good people.

3.2 Process

Since Agile Methods represent a new principles,
processes activities, and sub-goals, they have an
impact on many of an organization’s processes. Old
processes (e.g., planning, development, delivery,
operations) must be replaced by agile ones. Cultural
shifts in the organization towards Agile Methods turn
old ways of thinking on their end, inducing resistance.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

3.2.1 Planning

Agile processes are characterized by placing less
emphasis on formal planning. This is not to say that
planning does not occur. With so many small tasks, it
is argued that agile processes require more planning,
But unlike other methodologies, planning is not up-
front followed by micro adjustments. Rather it is a
constant task to ensure optimal delivery results [15].

Agile planning is a relatively informal process.
For example, deciding what will go into each time-box
is accomplished through the daily SCRUM meeting
by discussing pending problems, prioritizing work, and
assigning resources to the problems [12]. In other
Agile methods, even this level of planning may not be
considered [9]. It is important to factor in informality.

3.2.2 Documentation

In Agile Methods, documentation is sparse – often
limited to source code and a set of user stories as in XP
[2]. Most Agile Methods do allow for an optional
architecture to be developed, and in DSDM it is even
mandatory [13]. The driving factor for documentation
is Agile Methods is how often it is going to change and
need to be updated. A vision statement for a project
might be extremely beneficial and never change –
recording it warranted. Conversely, a low-level
component design would be more likely to change,
inducing some redundant document changes as well.
This documentation-light process avoids wasted effort
where documents are written once and then become
obsolete as they are not updated to reflect the changes.

With Agile processes, information is
communicated informally and is simply kept as part of
the collective knowledge of the organization. While
reducing the amount of documentation can increase
productivity, it does come at some risk and cost.
Documentation serves as a way to bring new members
up to speed. It is useful when transitioning the project
to a maintenance team. From a business perspective,
documents form the basis for audits assuring proper
quality procedures are followed. Documentation serves
as a domain knowledge repository. If the organization
changes dramatically, this knowledge can be lost.

3.2.3 Development Processes

Agile processes often encourage principles that
dramatically change the process. While many of these
are not limited to Agile Methods, Agile development
encourages if not require their usage. Key development
processes of interest are refactoring, minimalist
development, code reviews, and continuous
integration.

Refactoring is the process of taking code and
improving it without loosing any functionality. Code
might be improved for readability, maintainability, or
performance. In refactoring, the code must pass all
tests and abide by all defined contracts after it is
rewritten. The development process question here is
“when is refactoring prioritized over adding new
functionality?”

Minimalist development within the Agile Methods
community it is known as the YAGNI precept – an
acronym for “You Aren’t Going to Need It.” Under
YAGNI, features not needed for the current functional
product are stripped out to keep the implementation
simple. This reduces effort as well as “gold-plating”
where unneeded functionality trickles in. The risk with
YAGNI is that sometimes future requirements are
known and building the system to support these
requirements can lead to less effort down the road by
eliminating major refactoring [11][16]. Projects that
have well-defined future directions may not benefit
from this aspect of the agile development process.

Code reviews are the process whereby one or
more developers examines the code written by another.
This could be continuous as in the pair programming
aspect of XP [2] or be periodic as in the peer reviews
incorporated in DSDM [13]. A key advantage of code
reviews in this context is that they serve as a method of
communication. Developers become familiar with the
inner workings, design tradeoffs, and open issues with
areas of the code they may be required to work with
later. This can offset the risk of losing a member of the
team, either temporarily on vacation or other leave or
permanently due to a change in employment.

Continuous integration is the process whereby the
system is tested often, usually nightly if not even more
frequently [2]. Developers integrate their code into a
baseline and run a set of regression tests on it.
Continuous integration increases quality as side-effects
of a change are quickly uncovered. Since finding
defects early reduces the effort of fixing them, this
aspect of the agile processes can have a significant
impact on quality and schedules. However, developers
must write a comprehensive set of tests to be used as
regression tests and must take the time to integrate and
test their code. This may require a shift in developer
perspective if the developer is accustom to simply
writing code which is then tested by a different group.

Many development groups already practice these
principles. However, many developers are prickly
about the notions of peer programming and may chafe
at having to write a significant number of tests. It may
be necessary for the project manager to incorporate
these processes slowly and with incentives to increase
the chances of their acceptance.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

3.3 Project

Even the staunchest proponents of Agile Methods
do not claim their universal applicability for projects.
Different types of projects are more suited for Agile
Methods than others. Business factors may prevent the
utilization of Agile Methods. And there are several
project characteristics that reduce the effectiveness and
applicability of using Agile methods [10].

3.3.1 Project Types

Agile Methods are most applicable to projects
where requirements are ill-defined and fluid since they
seek to accommodate change easily. Projects that are
unprecedented within an organization or use cutting
edge technology (or are themselves the cutting edge
technology) are examples of projects where change is
likely to have a significant impact on the project.

Agile development does not lend itself to the types
of rigorous analysis required to ensure the degree of
assurance required for safety- and life-critical systems.
This is because proving correctness is a non-Agile
process requiring documentation and significant
analysis. While quality is kept high by having a large
number of tests, quality is only as comprehensive as
the tests themselves. Code reviews are performed, but
typically not with the rigor of formal methods that are
more typically used with such critical systems.

3.3.2 Business Factors

A key business factor affecting the
appropriateness of Agile Methods is contractual
obligation. For many contracting companies, what is to
be performed by the contractors is determined by a
statement of work defining key requirements and
tasking. If the requirements for work to be performed
are part of a legal contract, an Agile Method may be
inappropriate since requirements are malleable [2].
Documentation is also often used within a contracting
relationship to indicate what work was done, document
progress, and provide transition to the company
contracting out the work. Government contracts often
have significant documentation requirements such as
adherence to standards like ISO9000. Changing this
relationship to a less well-defined but more
collaborative relationship may not be possible, at least
in the short term.

Similarly, if the business requires the ability to
specify release dates to accommodate customers, this
represents a type of contract. Companies that use
software products that are integral to their business,
such as Enterprise Resource Planning (ERP) or
financial applications, may need to know well in
advance when a new version of a product will be

released and what features will be contained in it so
they can plan the migration to that version. Products
that require a road-map for features that is well-defined
may be unable to effectively use Agile Methods.

Documentation may also be required for
regulatory reasons. For example, within the financial
services community, the Securities and Exchange
Commission requires certain types of documentation
describing how issues such as insider trading and
market timing are prevented. Such documentation
might be able to be written and an Agile process still
used, but the impact of change on this documentation
must be considered.

3.3.3 Other Project Characteristics

Project time span is a significant characteristic that
is an impact on the effectiveness of Agile Methods.
Products that will take a long time to develop have
risks that must be mitigated for an Agile Method to be
used. It is likely that long-running projects will have a
large amount of staff turnover over the duration of the
project. Since Agile Methods rely on the collective
knowledge of the team loosing members is a critical
issue. This can be mitigated by rotating team members
into different functional areas and by changing pair
programmers periodically [14].

Long running projects are also a challenge since
they tend to be larger in nature, with a high number of
features and capabilities. This may lead to difficulties
in prioritizing work. A single customer representative
may not be sufficient and the project manager may be
required to make decisions on priorities.

Another important aspect of long lived projects is
that they tend to have long maintenance lives as well.
Maintenance can be an issue for Agile development as
the amount of documentation that can be used by the
maintenance developers is often very small. It is also
likely that the original developers have moved on and
may not even remember the decisions that were made
informally possible years before. Supporting a product
that is expected to be in service for a number of years
will probably require a degree of documentation
significantly beyond that employed by Agile Methods.

The project roadmap is another key characteristic
of a project to be considered. The YANGI principle
can lead to significant rework that would not have
been required had future requirements been considered
initially [11]. An entire architecture may need to be
rewritten to accommodate certain changes, especially
to non-functional requirements such as performance
and security [5]. Projects with roadmaps that are well-
defined may benefit substantially from architectures
that consider more than just the current release.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

4. Conclusions

Agile Methods offer a reasonable approach for the
high degree of change and uncertainty in today’s
software development. There are proven principles
employed in Agile Methods that, when applied
singularly under the right circumstances, result in
lower risk projects and ultimately better productivity
and quality (e.g., smaller teams result in lower risks
due to the better communications). Additionally, when
these are combined with other agile principles, there
can be a synergy that provides even more traction on
the project goals (e.g., small teams and pair
programming result in fewer errors and less rework).

Since ungoverned software change can often be
very costly, a methodology that addresses change can
be a very useful tool for a project manager. However,
Agile Methods are not appropriate for all projects. A
project manager must consider the characteristics of
the project to ensure that an Agile Method is
appropriate. The impact on the people, the process, and
the project must all be considered. For example, if a
team of largely junior members is applied to a project
that has very well understood requirements, and a
mature software process is already in place in the
organizations, there are three characteristics that argue
against applying Agile Methods as a whole. However,
the principle of small team might still be appropriate to
reduce risks.

Furthermore, specific challenges with using an
Agile Method can be offset by adding back some
formality. For example, if migration to a separate
maintenance group is required, documentation could
be written by the development group as part of the
transition [5][10].

Agile Methods offer software project managers an
alternative development and management methodology
that provides good support for projects with ill-defined
or rapidly changing requirements. Even on project that
are questionable for the application of the entire Agile
Method, underlying agile principles may still be
effective. Project managers should consider its usage
for such projects assuming that they have a team
capable of using it and can implement the required
processes. Otherwise, more traditional approaches may
be more appropriate.

5. References

[1] Highsmith, J. and A. Cockburn, “Agile Software
Development, The Business of Innovation,” Computer,
September 2001, pp. 120-122.

[2] K. Beck. eXtreme Programming Explained. Addison-
Wesley, 2000.

[3] “SCRUM, it’s about Common Sense.,
http://www.controlchaos.com/about

[4] J. Stapleton. DSDM – Dynamic System Development
Method. Addison-Wesley, 1995.

[5] Paetsch, F., A. Eberlein, and F. Maurer, “Requirements
Engineering and Agile Software Development,” Proceedings
of the 12th IEEE international Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises,
June 2003, pp. 308 – 313.

[6] D. Phillips. The Software Project Manager’s Handbook:
Principles that work at Work, IEEE Computer Society Press;
June 1998.

[7] “Manifesto for Agile Software Development,”
http://www.agilemanifesto.org

[8] Williams, L. and A. Cockburn, “Agile Software
Development: It's about Feedback and Change,”
Computer, June 2003, pp. 39-43.

[9] Cockburn, A. and J. Highsmith, “Agile Software
Development: The People Factor,” Computer, November
2001, pp. 131-133.

[10] Abrahamsson, P., J. Warsta, M.T. Siponen, and J.
Ronkainen, “New Directions on Agile Methods: A
Comparative Analysis,” Proceedings of the 25th
International Conference on Software Engineering, May
2003, pp. 244-254.

[11] Boehm, B., “Get Ready for Agile Methods, with Care,”
Computer, January 2002, pp. 64-69.

[12] Derbier, G., “Agile Development in the Old Economy,”
Proceedings of the Agile Development Conference, June
2003, pp. 125-131.

[13] Thomas, S. “An Agile Comparison,”
http://www.balagan.org.uk/work/agile_comparison.htm.

[14] Boehm, B. and R. Turner, “Using Risk to Balance Agile
and Plan-Driven Methods,” Computer, June 2003, pp. 57-66.

[15] Cohn, M. and D. Ford, “Introducing an Agile Process to
an Organization,” Computer, June 2003, pp. 74-78.

[16] DeMarco, T. and B. Boehm, “The Agile Methods Fray,”
Computer , June 2002, pp. 90-92.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

