
1

SPECIALIZED SYSTEM DEVELOPMENT

Osama Eljabiri and Fadi P. Deek

New Jersey Institute of Technology

1. Introduction

Software development exemplifies a complex problem solving process due to various

interdisciplinary variables that drive its evolution. Such variables are either problem-related or

solution-based. Problem-related variables set the criteria for solution characteristics and help

tailor solutions to specific problems while solution-based variables explain current options, assist

in future forecasting and facilitate scaling solutions to problems. The issue of whether to find

generic prescriptions to common problems [i.e. bottom-up generalization] or derive domain-

dependent solutions to specific problems [i.e. top-down specialization] is debatable.

One viewpoint considers software engineering a “standardized” response to the

approaches of generic methodologies and strategies as opposed to the non-systematic approaches

that characterize early software development. Standardization implies generic rules, procedures,

theories, and notations that mark a milestone in the development of any discipline. With

standardization, software development was to witness a paradigm shift from trial and error

experimentation to scientific maturity, from differing representation and implementation of

concepts to unified modeling and cross platform independency, and from vague economic

considerations to defined software-driven business models. The competing viewpoint of “one size

fits all” has not proven to be practical in real world software development (Glass, 2000). There is

no one methodology appropriate for every case, a strategy that works perfectly with every

problem or off-the-shelf-prescriptions that can be applied directly without scalability, tailorability

or customization. Even specific approaches that fit certain situations do not necessarily fit them

all the time since change is the only constant in contemporary business. There are evolving needs

that accompany innovation and emerging technologies. It can be argued that a balanced approach

2

between generalization and specialization can be adopted to achieve effectiveness in software

development.

This chapter addresses the notion of specialized system development. The field of system

specialization has been overlooked in the software engineering literature since the discipline was

formally launched. Also, generic software development had only provided a “weak” strategy

(Vessey and Glass, 1998) to solve problems since it only supplies guidance for solving problems

and not actual solutions to problems at hand. Scalability, tailorability and specialization have

become relevant issues in the software industry and software engineering research. Even general

applications are not actually generic. Many of such current applications support customization

features. Additionally, these systems are released in various modes that range from standard to

professional to enterprise editions suiting diversity of needs and problem complexity. Such

applications also evolve over the time to reflect changes in business requirements and

technological capabilities. Subsequent sections of this chapter define specialized system

development, discuss its drivers, present its advantages and disadvantages, and explore the types

of specialized system development and its categories. Also, the need for specialized systems

development and how that can be mapped to team structures is considered.

2. Principles of Specialized System Development

According to Merriam Webster dictionary, to “specialize” is to concentrate one’s efforts

in a special activity or field or to change in an adaptive manner. Concentration leads to more

attention to details and presumably enables more efficiently problem solving. Specialization links

theory to practice and makes it more meaningful. Generally speaking, specialized system

development is about developing software systems with focus. The focus may be on the

application domain, a certain phase of the development cycle, or a specific system development

methodology. An example of application-domain focus is software development for pervasive

computing including wireless and portable systems. An example of development phase focus is

special emphasis on project management, requirements analysis or architectural design as

3

opposed to generic knowledge in software engineering. An example of methodology focus is

systems development using structured or object-oriented strategies. However, specialization in

methodology spans a wider array of approaches and tools. This includes software development

process models (i.e. problem solving strategies), CASE tools and implementation techniques.

Application-focused software development is the most current frequently used definition for

specialized system development in the software industry.

Application-focused development can be classified into two categories: application-

oriented and infrastructure-oriented. Each of these two categories can have a problem-focus or a

solution focus. Problem focus can be based on the type of industry involved or the application

domain. Solution domain can be based on custom-development, package-development or

development aid (Glass and Vessey, 1995).

2.1 Roots For Specialized System Development

The history of specialized system development is tightly coupled with the evolution of

computer hardware and technology advancement.

• Domain-Dependent Era (pre-software development methodology):

In the period of 1955-1965, computer hardware was application dependent. It was

virtually impossible to develop business and scientific applications on the same machine.

“Medical applications” and “unusual applications” were two examples of the distinct focus of

application development during this era. Problem–oriented languages such as Fortran, COBOL,

and ALGOL were developed to translate old software to be compatible with the requirements of

new computers. Domain-specific focus was the major driver in building successful software

systems. New disciplines emerged to support these systems such as numerical analysis and

information retrieval (Vessey, 1997).

• Domain-Independent Era (early-software development methodology):

4

In the period of 1964-1980, the IBM 360 was introduced (in 1964) followed by the

introduction of the lower midrange model 40 and model 67 shipped with hardware to support

virtual memory shortly after. The IBM 360 combined scientific and business applications in one

machine. The sociology of software development was strongly influenced by the “360” ability to

end the separation between scientific and business applications. Generic applications were

possible when software business become independent of hardware vendors. Competitive

advantage in software development became directly proportional to the interdependency of

standards, hardware or platforms. This era witnessed many attempts to institutionalize

application-independent software development strategies (Vessey, 1997). This lead to the

building of solid foundation for the next era of methodology-intensive software development.

• Generic Applications Era (methodology-intensive software development):

In the period of 1980-1995, the birth and evolution of desktop PC computing and Laptop

computing was witnessed. With the availability of computers and the high degree of usability,

user involvement and impact became more dominant and the availability of technology facilitated

automation efforts in software implementation, which in turn enabled non-technical users to be

active participants in the process (Glass, 1998). User-friendly GUI took over JCL (job control

language) taking human computer interaction (HCI) to a new level. Some attempts at developing

application-dependent software (such as 4TH generation languages, rule-based languages, and

simulation languages) were also carried out (Vessey, 1997).

• Return to Application-Focused Development Era (software development post-

methodology):

In the period of 1995-present, the evolution of networked hardware architecture was quite

dominant. Developing web-based applications marked a milestone in this era as was the

emergence of web-driven tools and programming languages (i.e.: HTML, Java, Java Script,

XML, VML, etc.), the evolution of friendly web interfaces through internet browsers and email

agents, the emergence of web-based software engineering as a software development

5

methodologies, the increasing demand for software that balances speed and quality and the

synchronization between business processes and software evolution.

2.2 Generic Versus Specialized Development

The shift from domain-specific computers to application-independent ones was

considered an important event for software development. The subsequent advancement of

application-independent computers into desktop and then notebook computing was another

milestone that marked a shift toward generic infrastructure systems, applications and components

with notable advantages such as:

1- Portability: Software can be used virtually anytime anywhere since the generic software

became the dominant factor rather than the hardware.

2- Compatibility: One operating system can host a vast number of applications regardless

of their vendors. Generic operating systems became a central repository for shared

components across applications.

3- Reusability: One application or one module can be used across computer models,

organizations, and endless number of users. It can be distributed over an organizational

network or the World Wide Web. It can also be reused to develop new releases of

software implementations. Furthermore, with few modifications through built-in

preferences or options, the same application can be customized or tailored to more

specific needs.

4- Ease of training: Generic applications became easier to teach and learn because of their

availability and training material became cheap (or even free) due to mass production of

such software products.

5- Cost–effectiveness: Since operational costs are generally lower with mass production

and their revenues is usually high, they are sold or made available at competitive prices to

the end user.

6

There are also disadvantages worth noting with generic applications. For example, such

applications are based on the assumption that there are no significant differences between

individuals and/or organizations that require special tailorability or scalability. This assumption

applies also to generic methodologies and strategies in software development. These

methodologies are rarely based on type or size of the project or technology environments and

organizational settings. Such methodologies are considered one-dimensional approaches because

they often do not mirror a particular organization’s underlying problems (i.e. social, political and

organizational development dimensions) (Avison and Fitzgerald, 2003). Generic applications also

assume that businesses or individuals should be able to adapt to the infrastructure and

functionalities of generic applications with limited room for changes. This can be true within the

same application domain but can be extremely ineffective from a domain to another.

Additionally, the assumption that business processes can be easily changed to fit a genetic

software product is unrealistic and costly. Additionally, diversity of goals, market demands,

stakeholder requirements, architectural specifications, non-functional requirements,

organizational cultures, etc. across business domains and specializations makes generic

development strategies impractical. For some organizations, adopting a specific methodology

make not lead to desired result and can lead to reject methodologies altogether (Avison and

Fitzgerald, 2003). Agile software development may be viewed as a reflection of this fact.

2.3 The Context of Problem Solving in Specialized System Development

Since software development essentially aims to solve problems, it is important to view

specialized system development in the problem-solving context. Basically, solving problems

involve two key elements: the ability to comprehend the problem and the capability to solve it.

Hence, specialized system development is either problem-focused or solution-driven. Because

problem types and solution strategies in software engineering vary, effective understanding of

their diversity is a pre-condition to successful specialized system development. In fact, this

diversity is a major driver for specialized development since differences are the catalyst for any

7

specialization. Relevant questions include understanding how specialization in investigating and

identifying problem characteristics can help in evaluating existing solution options and selecting

the most proper ones and how specialization in domain analysis and requirements engineering

can help in developing effective solutions by means of proper processes or methods selection or

constructing specialized processes or methods for certain applications. How can software

products or solutions be adequately used, reused, customized, personalized, reengineered, or

redeveloped based on application-driven or domain-specific specialization. How can

specialization in problem, method, product or domain analysis assist in proper selection or

successful construction of computer-based problem solving strategies that articulate suitable

methods, process models, techniques and tools.

Figure 1. Generic and specialized software development in the problem-solving context

Careful examination of problem and solution diversity reveals three key drivers for

specialized system development: Characteristics of the system to be developed, characteristics of

system anticipated users; solution–driven capabilities, experiences and knowledge; and

characteristics of system developers.

2.3.1 Characteristics of the system to be developed

This is a problem-focused category. Diversity of software systems in terms of size,

complexity, time constraints, scope, underlying technology, business goals and problem

environment are the most critical drivers in this category. Problems range from structured at the

operational levels of organizations to semi-structured at the tactical level to ill-structured at the

top management or strategic level (vertical specialization). Problem specialization can be

between organizations in the same industry or across industries (external horizontal

specialization) or within the same organization across its various functional departments or key

business processes (internal horizontal specialization).

2.3.2- Characteristics of systems anticipated users

8

This is also a problem-focused category. Some of the drivers in this category are: age

considerations, gender considerations, purpose of using the system (i.e. personal vs. business

users), user background (i.e. technical vs. non-technical users), and user environment. User

environment includes but is not limited to: cultures, languages, geographic locations, technical

resources, financial resources, human resources, legal and ethical issues, etc. Each one of these

drivers creates certain needs in systems development and therefore triggers specific

specializations in responding to these requirements.

2.3.3- Solution–driven capabilities, experiences and knowledge

System specialization under this category is based on tools and resources rather than

application domain. This includes capabilities and experience in project management tools,

requirements analysis techniques, architectural models, user interface approaches, database

management strategies, implementation languages, development tools, development

methodologies and process models. These capabilities affect numerous number of specializations

in the solution area.

3. Application-Based Specialized Development

The convergence of three traditional computing specializations, personal, networking and

embedded, produced a new computing era referred to as “pervasive computing”. Mobile

computing, wireless devices, PDA, Pocket PC, and Tablet PC are all examples of pervasive

computing products. The software applications are important components in these products and

the nature of these applications brings a new set of challenges in software development.

3.1 Pervasive Software Development

Pervasive applications can be distinguished by the following characteristics: Ubiquity,

interconnectedness, and dynamism. These applications strive to be embedded, distributed, non-

intrusive, and cost-effective (Ciarletta and Dima, 2000). This implies that software economics,

system architecture and security are significant issues in pervasive software engineering. A

9

conceptual model is suggested to highlight the aspects of pervasive systems development in

which four layers have been identified (physical, resource, abstract and intentional layers)

(Ciarletta and Dima, 2000). Table 1 elaborates on the role each one of these layers play in

specialized pervasive system development.

Table 1. The Roles of Pervasive Systems Development Layers

A framework of four levels can provide a sound process for developing effective m-

commerce applications (Varshney and Vetter, 2001). These four levels are:

1. M-commerce Applications: Modifying new e-commerce applications for a mobile

environment.

2. Wireless User Infrastructure: the modified or new mobile commerce applications

should support the capabilities of user infrastructures. For example, m-commerce

applications must be as effective for the mobile devices such as PDA’s and cell

phones.

3. Mobile Middleware: the new m-commerce applications must have better response

time and reliability when deployed because the middleware will be used to connect e-

commerce applications with different wireless networks.

4. Wireless Network Infrastructure: Networking requirements need to be fulfilled based

on the type of m-commerce applications being deployed. Such requirements would

be quality of service, network reliability, location management, roaming across

multiple networks, and multicast support.

Effective m-commerce application can be deployed if network reliability and redundancy

is increased. Furthermore, creating mobile commerce applications requires a unique set of

knowledge and needs specific networking support factors to create effective applications (Kalakot

et al, 2000) that includes wireless quality of service (QoS), efficient location management, and

reliable and survivable Networks.

10

3.2 Real-Time Software Development

Real-time software development is not new and dates back to the 70’s and continue to

evolve today. The development of real-time systems requires the consideration of three basic

issues (Felder, 2002) including complex timing (at the higher requirements specification levels),

resource constraints (lower design levels), and scheduling constraints (lower design levels).

Gaulding and Lawson (1976) described a disciplined, engineering approach to real-time

software development with a focus was on a process design methodology. The basis to this

approach is a process performance requirement, a document describing the interfaces to the

software, the software functional and performance requirements, the operating rules and the data

processor hardware description. The goal of process design engineering was the development of

an automated approach to the "evolutionary" design, implementation, and testing of real-time

software. Gaulding and Lawson thus defined the crucial aspects of effective real time software

development to include four important components: Transformational technology to enable

traceable transformation from functional requirements to a software structure for a given

computer. Architectural Approach which requires a top-down design, implementation, and

testing techniques supported by a single process design language. Simulation technology which

provides a capability for evaluating trial designs for real-time software processes. Supporting

tools for automating such functions as requirements traceability, configuration management,

library management, simulation control, and data collection and analysis.

An early software development life cycle for real time systems was proposed (Gomaa,

1986). This method attempts to tailor generic software development methodology to reflect the

special needs of real-time software development. Table 2 describes this method, phases and

applications.

Table 2. Life Cycle Phases for Real Time Software Systems

3.3 Web–based software development

11

Web-based software development is growing at a faster rate than any other domain.

Software systems with web capabilities can maximize the business added value more effectively

with their ability to reach customers, partners and enrich the business process with information

(Evans and Wurster, 1999). Three criteria to assess business value in IT-based systems are:

productivity, business profitability and consumer surplus (Hit and Brynjolfsson, 1996). Web

applications extend traditional business goals beyond direct financial measures to encompass

measures of customer satisfaction, internal processes, and the organization’s innovation and

improvement activities. These operational measures affect organizational financial performance

(Der Zee and de Jong, 1999). Efficiency, quality, market share and penetration emerged as

important measures and goals of business (Singleton et al., 1988) that can be improved by web-

based systems. These influences have motivated industry to integrate internet/intranet information

systems in their businesses that necessitate the adoption of new management techniques to

harness the advantage of this particular technology and align it with the organizational structure.

3.3.1 E-Business Software Systems

There are more demands on quality and reliability of web-based software development

that ever before. Successful configuration for web applications requires special attention to

several interrelated aspects that play key roles in leveraging web engineering to the competitive

advantage level. These ingredients are driven by development teams, legacy systems, value chain,

and business integration and management strategies and include:

• Skills, Structure and Management of the Development Team

Skillful staff in web-driven software development projects can significantly boost

performance. Training programs and availability of necessary resources have strong influence on

the quality of e-business applications since that enables the development time to reduce the cycle

time of tailoring solutions to application needs. Effective management can create the right team

structure and the necessary synergy from diverse abilities.

• Legacy Applications

12

Scope and domain of legacy business problems shape the strategies needed to solve e-

business software problems. The issue of negative correlation between organizational complexity

and the impact of technical change is a disputable one (Keen, 1981), since the more complex are

organizations the more ill structured are their business problems (Mitroff and Turoff, 1973). Even

though this influences the ability to tackle such problems smoothly, information technology

enables a complex organization to redesign its business processes so that it can manage

complexity more effectively (Davenport and Stoddard, 1994).

• Value Chain and Logistics Management

Value chain is the set of activities business requires to achieve its objectives where

additional values can be added as activities proceed from phase to another. E-business

applications utilize internet technology to over products and services which requires integration

of business processes and their relevant activities as well as the logistics of end users to original

suppliers. Effective management of the entire process can add considerable value to consumers in

terms of organizing, coordinating and controlling supply chain activities and logistics (Turban et

al, 2000). This defines certain criteria for effective web-based development that encompasses

flexibility, quality, dependability, agility and efficiency. Optimization can be assessed in terms of

delivering the right product at the right time at each level of the supply chain (Vokurka et al,

2002). The value chain concept can be further utilized to build decision support systems to

enhance the decision making process at the tactic and strategic management levels (Haavengen et

al, 1996). Also, electronic product development (EPD) is another aspect of e-business

development that relies on holistic prospective on the entire product value chain encompassing

customers, designers, suppliers, manufacturers, and logistics providers toward more successful

mass customization (Helander, 2000).

• Aligning E-business Applications with Organizational Goals

E-business solutions can effective in serving organizational goals and marketing

requirements. Strategies that integrate the Internet and traditional advantages are expected to be

13

the kind of approach that creates potential advantages for existing corporations (Porter, 2001). E-

business software systems do not rely only on the internal preparation of the company but also on

the readiness of its customers and suppliers to engage in electronic interactions. By committing

resources to the business problem, management can create a value driver that that boosts business

readiness for e-commerce challenges (Barua et al, 2001). These e-commerce solutions link

customers, suppliers, partners, and inter-organizational departments in one or more unified value

chains. If these links are not well managed and efficiently aligned in synchronized frameworks,

delays will occur and costs will exceed any profit earned. Clearly, this will result on financial loss

and customer dissatisfaction.

Some issues may have indirect affect on the success of the E-Business applications.

These are supply chain management (SCM) and enterprise resource management (ERM) which

help explaining the impact of legacy business applications on the success of E-business

development. Better understanding of customers and suppliers needs along with dissecting

current business process and how they will affect the overall methods of supply chain and

resource management will lead to flexible and manageable utilization of information technology

to design reengineered business processes (Daoud, 2000).

3.3.2 Object-Oriented Development For Web Applications

Gellersen and Gaedke (1999) proposed a web composition model that defines an object-

oriented approach for web development based on web implementation models. This model was

developed to provide developers the capabilities of object-oriented concepts in terms of

reusability, inheritance, improved modifiability and extensibility. Conallen (1999) addressed

object-oriented web application architecture through a UML-based approach. This approach aims

to facilitate managing complexity for web applications and enable enhanced reusability. The

approach integrates three models of web application architecture: business model, navigation

model and implementation model and works in conjunction with CASE tools support.

3.3.3 Customizable Web-applications

14

Several approaches to modeling and implementing customizable web applications have

been proposed. These approaches share the characteristics for web development environments

(Kappel et al, 2000) that explicitly consider user context for customization, reflecting the need for

personalization for both individuals and classes of users and they consider network and device

contexts together. Network context is related to network settings while device context is based on

multi-delivery of different devices or classes of devices. However, they have different degrees of

location and temporal contexts. Location context is related to mobile computing and portability

while temporal context is based on time constraints.

3.4 Security-Driven Software Development

Software systems have evolved into global networked infrastructures, multi-dimensional

databases and enterprise data warehouses that interconnect individuals, businesses, organizations,

competing supply chains, numerous mobile and wireless applications and even countries. The

software engineering literature typically classifies security as one of the measures for quality and

reliability in software products. Moreover, the software engineering field addresses the security

issue as a part of the risk analysis process to minimize the likelihood of intrusions, attacks,

hacking or fraud in information systems. The issue of security in contemporary software

applications is a critical component for business survival. There is a need for protecting

organizational strategic assets such as information. In e-commerce, for example, customers, who

are more aware than ever before of the ramifications of unsecured personal or private

information, gain business trust with sufficient security measures, policies and standards.

The area of information systems security has evolved across paradigms and strategies

(Siponen, 2002). These range from the generic, based on common sense, to the specific based on

organizational culture and needs, as described in Table 3. Security-driven systems are receiving

greater attention in current software development strategies including the reengineering of

existing systems by adding or enhancing security features, building security-based applications to

ensure security in systems such as anti-viruses, firewalls, etc., building privacy applications or

15

adding features that enhance privacy of individuals, and building awareness or surveillance-based

applications that can help in detection and/or protection against crime and terrorism. Computer

vision, image processing and multimedia-based technologies play a significant role in these

applications.

As with all forms of software development, the design of such systems is not without

challenges. The tradeoff between open communication channels and the potential for security

threats through these same channels is one example. The remaining parts of this section present a

framework for dealing with security considerations in the software development process,

particularly in terms of the analysis and design of such systems.

Table 3. The Four Generations of Information Systems Security Approaches

3.4.1 Security–Driven Requirements Analysis

Since a large portion of software engineering literature was developed prior to the web

era, investigating vulnerabilities was rarely addressed adequately. Web-driven applications and

infrastructures have necessitated a change. For example, in terms of security, while web

connectivity increased access to public information, it exposed the very same information and

information systems to more risks and vulnerabilities (Deswarte, 1997). In some software

engineering methodologies, security requirements are addressed in the analysis phase as non-

functional requirements since software systems need to comply with internal and external security

standards. Summerville (1996) classifies security requirements as external, non-functional safety

and privacy requirements. This view is true from a categorization perspective, but it needs to

consider that even functional requirements should be guided by security metrics or they may

otherwise increase system vulnerabilities. Additional requirements or flexible requirements could

expose the system to unexpected risks (Smith, 1991 and Pfleeger, 1997). Security-driven

requirements analysis involves defining security objectives, setting their metrics, identifying

potential risks, investigating vulnerabilities, creating what-if scenarios, reviewing current

requirements, and reformulating requirements to reflect the input of the analysis phase. Analysis

16

output becomes the guidelines for designing security-driven solutions. Additional details are

shown in Figure 2.

Figure 2. Security-Driven Requirements Analysis Process

Security objectives are usually based on organizational standards, underlying technology

and magnitude of anticipated threat. Since security breaches are highly unpredictable and their

nature and scope can change over the time, organizations need to be adaptive to new threats and

capable to adjust their objectives to meet the demands of evolving challenges. Once objectives

are determined, quantitative and qualitative measurements should be derived and extracted to

establish evaluation metrics to validate and verify quality of software products in terms of

security requirements. The major task in security-driven analysis is identifying potential security

risks. Risk Assessment is essential because an organization may be attacked from both within and

outside its network (Philips and Swiler, 2001).

Identifying potential security risks involves investigating systems vulnerabilities

thoroughly. Vulnerabilities can be attributed to intentional and unintentional factors.

Unintentional factors are related to human mistakes, exceptional hazards in the environment,

system failures, gaps in hardware or software design, or bad requirements specifications. While

external factors contribute to the existence of this category of vulnerabilities, it is the analysis,

design, implementation and usability of the system that make the vast majority of security threats

in most organizations. For example, a problem in data collection, data entry, data distribution,

referential integrity, or authorization can result in some breaches or putting data into risky

situations. The growing concern of infrastructure vulnerabilities where more damage with a

keyboard than with a bomb (Baskerville, 1993) is an important issue for organizational

management. Tracing and tracking leakages, security gaps and security-related problems across

the software development process are ways to ensure security in software systems. The

traceability process as shown in Figure 3 offers a strategy for a software engineering approach to

system security via traceability analysis.

17

Figure 3. A software engineering approach to systems security via traceability analysis

Intentional factors that threaten system security include data theft, data abuse, source

code theft, deliberate data manipulation, data tampering malicious damage, virus and attacks

destruction, cyber crimes, terror attacks and other miscellaneous computer crimes. Computer

crimes range from using the computer or computer network as a target, to using computer as a

medium (i.e. misleading information), to using computers as a planning or deception tool (Turban

et al., 2002). One of the current and serious challenges of information systems is how information

and communication technologies can contribute to public safety (Shneiderman, 2002). Recent

efforts focus on enhancing security at the technical level (i.e. network-based security) while some

attention is paid to security at the analysis and architectural levels. Anti-terror system

development relies not only on solution-focused capabilities but also on profound comprehension

of problem domain by studying attacker’s behavior has proven to be beneficial (Erland and

Olovsson, 1997). System vulnerabilities or security gaps in any information system provide

opportunities to carry out attacks or steal critical information. Identifying and securing these gaps

will minimize potential risks. Holmes (2001) pointed out the need to assess system security

breaching motives in order to then protect and manage the systems infrastructure, according to

their vulnerabilities. Salenger (1997) relates the level of organizational internet security to their

relative “functional uses” of the internet. Engineering secure systems requires a great deal of

managing infrastructure vulnerability (Demuth and Rieke, 2000).

Some models suggested in designing a secure environment (Salter et al., 1998) are:

adversary model, vulnerabilities model, and methodology model. The Adversary Model includes

the understanding of three motives of threat potentials: what they can do, what they are willing to

do, and what they want to do. The vulnerabilities model implies three steps to any successful

attack: analyze the targeted system to find weaknesses, gain access quietly, and execute attack.

The methodology model categorizes attacks based on their characteristics and aims to find the

best protective countermeasure. While the adversary model is based on information gathering,

18

the vulnerabilities Model is driven by risk analysis and the methodology model is related to

response procedure and recovering.

3.4.2 Security–Driven Systems Design

Designing security-focused solutions for software systems can be done at two different

levels: the conceptual level and the technical level. The conceptual level provides the

architectural foundation for the technical level. The key concept for security-focused architectures

is defense strategies. The ability of a software system to encounter threats is tightly coupled with

its capability to reduce vulnerabilities, detect threats and provide protection shields that prevent

eliminate, or deal effectively with breaches and attacks. Figure 4 depicts this concept as a seven-

layer conceptual model for defense strategies in security-focused system design.

Figure 4. Seven-layer conceptual model for defense strategies in security-focused system design

In this model, five key defense strategies (prevention control, detection, limitation,

recovery and correction) can be used separately or combined to minimize systems vulnerabilities

or system weaknesses (Turban et al., 2002). Prevention control is the most effective strategy,

whether it is human error, external attack or unauthorized usage. Access control plays a

significant role in this defense strategy. Figure 5 provides a basic taxonomy of various types of

security controls in software systems. An intrusion detection system (IDS) is system that can

identify authorized uses, misuses or abuses of computers by either authorized users or external

perpetrators. Intrusions can be classifies into three categories: single intruder signal terminal

(SIST), single intruder multiple terminal (SIMT) and multiple intruder multiple terminal (MIMT)

(Puketza et al., 1996).

Figure 5. A basic taxonomy for security control techniques in software systems

Object–oriented and component-based architectures have proven to be maintainable

structures since they allow easy replacing of defective components. Distributed object

architecture and design standards provide an adequate level for generic distributed applications.

But these are only the first step in building application-specific software architectures for

19

achieving overall system development objectives. While Commercial enterprise application

integration (EAI) tools and workflow management system (WFMS) products allow to advance

basic distributed standards to the commercial level, they are still far beyond mission-critical

applications needs. Such needs encompass mission-critical business and information security

processes. System designers should employ security solutions that reinforce each other, define

relationships based on trust, and use protective countermeasures to prevent attacks.

The effectiveness of database and network design plays a crucial role in reducing system

vulnerabilities. For instance, cryptographic protocol design is frequently cited in the literature as a

source for distributed systems vulnerabilities. Yet, analysis and design techniques have proven

useful in detecting protocol vulnerabilities (Stubblebine et al., 2002). Cybenko and Jiang (2000)

discussed the vulnerabilities of the Internet and proposed a six-stage protection process to

counteract malicious uses. Information-gathering techniques are the first essential step in this six-

stage process for protection of infrastructures and to increase awareness of emerging threats.

Information gathering techniques include: intelligence reports, unusual-incident analysis, and

automated information harvesting from the Web and news services. The second essential step is a

thorough risk assessment of the current system to find vulnerable areas. This risk assessment

includes: modeling an attack, modeling failure of main system and modeling subsidiary failures

due to main systems. The third step is interdiction, which includes being able to make use of

current prevention methods that are already available. The forth step is detection of attacks

through early warning systems and monitoring resources. Monitoring subsystems are able to take

actions while an attack is underway, whereas a warning system can attempt to prevent an attack

before it happens (Salter et al, 1998). The fifth step is implementing the proper response

procedure once an attack has been acknowledged. Response procedures are what Cybenko and

Jiang call forensic challenges. Response procedures can only be implemented when an attack is

already underway. Once an attack is detected, the system should be able to trace the attack. The

20

final stage in Cybenko and Jiang’s approach is recovery which includes learning from the attack

and documenting its characteristics for future reference in a knowledge base.

4. Research Issues and Summary

The area of specialized system development can be characterized as new, huge and

crucial. This field is evolving as the importance of scalability and tailorability as opposed to

generic strategies and approaches in software development is realized. The theoretical

foundations of specialized system development will continue to evolve to provide a roadmap for

new research and development. This will, in turn, provide new challenges and opportunities to the

software engineering community since specialized system development is not only new but also

critical for many contemporary software applications. An important aspect in future research and

development of specialized systems development also concerns the government, industry as well

as academia. The government’s role in decryption of information on the Internet is crucial (Fox,

2001). For example, some of the intelligence issues and policies to be further addressed have

been identified (Artz, 2001; Wilson, 2000 and Zorpette, 2002). These are human role in

information analysis, gaps in technical intelligence and cooperation between organizations and

services that collect intelligence. While certain responsibilities are defining the role of the

government, others are placing a clearer definition on organizational roles. Salenger (1997) states

that the level of security implemented by organizations is directly proportional to two factors, size

and income. Larger companies have the people and the resources required to properly establish

and run a secure internet environment where smaller companies may not. Better protocols for

defining and enforcing standards are expected to continue to emerge.

5. Defining Terms

Weak strategy: Generic approaches in problem solving not tailored to specific problem domains.

System Specialization: The concentration on unique problems and the techniques for

comprehending and solving them.

21

Vertical specialization: Specialization in the different levels of problem complexity across inter-

organizational pyramid from operational to top management.

Horizontal specialization: Specialization across various functional departments or business

needs within the organization or across various domains with an industry or between industries.

Pervasive computing: The convergence of three traditional computing specializations (personal,

networked and embedded), which produced a new computing era marked with wireless and

portable hardware and software.

Process Design Engineering: The development of an automated engineering approach to the

evolutionary design, implementation, and testing of real-time software.

Pamela: Process abstraction method for embedded large applications.

SCR: Software Cost Reduction project-Naval research laboratory.

Infrastructure vulnerabilities: Weakness points and security gaps in the physical or logical

architecture of information systems that may enhance opportunities to carry out attacks or steal

critical information.

Interdiction: Being able to make use of current prevention methods that are already available.

Attentive Systems: Attentive systems are those that can be used to understand user trends or log

and track Internet usage across multiple sources.

Steganography: Hiding data within data.

Cognitive Fit: An approach in specialized system development where the goal is to match as

closely as possible the representation to the task and user at hand. The key concept is that there

should be harmony among three variables: the user’s cognitive skills, the task, and the

representation of the task (as presented to the user).

References

Artz, D. 2001. Digital Steganography: Hiding Data within Data. IEEE Internet Computing 5(3):
75-80.

Avison, D. and Fitzgerald, G. 2003. Where now for Development Methodologies?
Communications of the ACM, 46(1): 48-72.

22

Barua A., Konana P., Whinston A., and Yin F. 2001. Driving E-Business Excellence. MIT Sloan
Management Review. Cambridge. 43 (1): 36-44.

Baskerville, R. 1993. Information Systems Security Design Methods: Implications for
Information Systems Development. ACM Computing Surveys. 25 (4): 365-414.

Baskerville, R. 1993. Information Systems Security Design Methods: Implications for
Information Systems Development. ACM Computing Surveys. 25 (4): 365-414.

Ciarletta, L., Dima, A. 2000. A conceptual model for pervasive computing Parallel Processing.
Proceedings of the 2000 International Workshops on Parallel Processing: 9–15

Conallen, J. 1999 .Modeling Web Application Architecture With UML. Communications of The
ACM. 42: 63-70.

Cybenko, G. and Guofei J. 2000. Developing a Distributed System for Infrastructure Protection.
IT Professional. 2 (4): 17 -23.

Daoud, F.2000. Electronic commerce infrastructure. IEEE Potentials. 19 (1): 30-33.

Davenport, T. and Stoddard D. 1994. Reengineering: Business Change of Mythic Proportions?
MIS Quarterly. 18(2): 121-127.

Demuth, T. and Rieke, A. 2000. Bilateral Anonymity and Prevention of Abusing Logged Web
Addresses. 21st Century Military Communications Conference Proceedings. 1: 435-439.

Deswarte, Y. 1997. Internet Security Despite Untrustworthy Agents and Components.
Proceedings of the Sixth IEEE Computer Society Workshop on Future Trends of Distributed
Computing Systems. 53: 218-219.

Evans, P. and Wurster, T. 1999. Getting Real About Virtual Commerce, Harvard Business
Review. 77(6): 85-94.

Erland, J. and Olovsson T. 1997. A Quantitative Model of the Security Intrusion Process Based
on Attacker Behavior. IEEE Transactions on Software Engineering. 23(4): 235-245.

Felder, M. 2002. A formal design notation for real-time systems. ACM Transactions on Software
Engineering and Methodology (TOSEM). 11(2): 149-190.

Fox, R. 2001. Privacy Tradeoff Fighting Terrorism. Communications of the ACM. 44(12): 9-10.

Gellersen, H. and Gaedke, M. 1999. Object Oriented Web Application Development. IEEE
Internet Computing. 3(1): 60-68.

Glass, R. 1998. In the Beginning, Recollections of Software Pioneers. The IEEE Computer
Society Press, Los Alamitos, CA.

Glass, R., and Vessey, I. 1995. Contemporary Application-Domain Taxonomies. IEEE Software.
12(4): 63-76.

23

Glass, Robert L. 2000. Process Diversity and a Computing Old Wives’/Husbands Tale. IEEE
Software. 17(4): 128-129.

Gomaa, H. 1986. Software Development of Real-Time Systems. Communications ACM. 29(7):
657-668.

Haavengen, B., Olsen, D., Sena, J. 1996 .The Value Chain Component In A Decision Supports
System: A Case Example. IEEE Transactions on Engineering Management. 43(4): 418–428.

Helander, M. and Jiao, J. 2000. E-Product Development (Epd) For Mass Customization.
Management of Innovation and Technology, Proceedings of the 2000 IEEE International
Conference on ICMIT 2000. 2 (2): 848–854.

Hitt, L. and Brynjolfsson, E .1996. Productivity, Business Profitability, And Consumer Surplus:
Three Different Measures Of Information Technology Value. MIS Quarterly. 20(2): 121-142.

Holmes, N. 2001. Terrorism, Technology and the Profession. Computer. 34 (11): 134-136.

Kalakota, R., Varshney, U., and Vetter, R. 2000. Mobile Commerce: A New Frontier. IEEE
Computer Society: Special Issue on E-commerce. 33(10): 32-38.

Kappel,G., Retschitzegger, W. and Schwinger, W. 2000. Modeling Customizable Web
Applications-A Requirement's Perspective. Proceedings of the International Conference on
Digital Libraries: Research and Practice. Kyoto.

Keen, P. 1981. Information Systems and Organizational Change. Communications of the ACM.
24(1): 24-33.

Kelly, J. 1987. A Comparison of Four Design Methods for Real-Time Systems. IEEE
Proceedings of the 9th International Conference on Software Engineering: 238-252.

Kelsey, J. and Bruce S. 1999. Secure Audit Logs to Support Computer Forensics. ACM
Transactions on Information and System Security (TISSEC). 2(2): 159-176.

Mitroff, I. and Murray T. 1973. Technological Forecasting and Assessment: Science and/or
Mythology? Journal of Technological Forecasting and Social Change. 5(1): 113-134.

Porter, Michael E. 2001. Strategy and the Internet. Harvard Business Review. 79: 63-78.

Pfleeger, C.P. 1997. The fundamentals of information security. IEEE Software. 14(1): 15-16.

Puketza,N., Zhang, K., Chung, M., Mukherjee B. and Olsson, R. 1996. A Methodology for
Testing Intrusion Detection Systems. IEEE Transactions on Software Engineering. 22(10): 719-
729.

Salenger, D. 1997. Internet Environment and Outsourcing. International Journal of Network
Management. 7(6): 300-304.

Salter, C., O., S., Schneier, B. and Wallner, J. 1998. Toward a Secure Engineering Methodology.
Proceedings of the 1998 workshop on new security paradigms: 2-10.

24

Shneiderman, B. 2002. ACM’s Computing Professionals Face New Challenges. Communications
of the ACM: 31-34.

Singleton, J., McLean, E. and Altman, E. 1988. Measuring Information Systems Performance:
Experience With the Management By Results System at Security Pacific Bank .MIS Quarterly.
12(2): 325-337.

Siponen, M. 2002. Designing secure information systems and software: Critical evaluation of the
existing approaches and a new paradigm. Unpublished PhD Dissertation. University of Oulu.

Stubblebine, S., and Wright, R. 2002. Authentication logic with formal semantics supporting
synchronization, revocation, and recency. IEEE Transactions on Software Engineering. 28(3):
265-285.

Smith, G.W. 1991. Modeling Security-Relevant Data Semantics. IEEE Transactions on Software
Engineering. 17(11): 1195-1203.

Turban, E., Lee, J., King, D and Chung, H. 2000. Electronic Commerce: A Management
Perspective. Prentice Hall, NJ.

Turban E., Rainer K., Potter R. 2002. Introduction to Information Technology. 2nd Edition,
Wiley, New York, NY.

Varshney U., and Vetter, R. 2001. A Framework for the Emerging Mobile Commerce
Applications. Proceedings of the 34th Hawaii International Conference on System Sciences
(HICSS 34). IEEE Computer Society.

Varshney U., and Vetter, R. 2000. Emerging Mobile and Wireless Networks. Communications of
the Association of Computing Machinery (ACM). 43(6): 73-81.

Vessey, I. 1997. Problems versus solutions: the role of the application domain in software,
Proceedings of the seventh workshop on Empirical studies of programmers, Virginia: 233-240.

Vessey, I. and Glass, R. 1998. Strong vs. Weak: Approaches to Systems Development.
Communications of the ACM. 41(4): 99-102.

Vokurka, R., Gail M., and Carl M. 2002. Improving Competitiveness Through Supply Chain
Management: A Cumulative Approach. Competitiveness Review. 12 (1): 14-24.

Wilson, C. 2000. Holding Management Accountable: A New Policy for Protection Against
Computer Crime. National Aerospace and Electronics Conference. Proceedings of the IEEE
2000: 272-281.

Zorpette, G. 2002. Making Intelligence Smarter. IEEE Spectrum. 39(1): 38-43.

Further Information

A good survey of industry frameworks is presented in the article titled Contemporary

Application-Domain Taxonomies by Glass and Vessey published in the IEEE Software in 1995.

25

The authors pay particular attention to representative taxonomies, IBM industry’s taxonomy,

digital industry’s taxonomy, digital application taxonomy and Reifer’s application taxonomy.

Other good sources are:

SIMS: A Secure Information Management System for Large-Scale Dynamic

Coalitions by Jiang and Dasgupta published in the IEEE Proceedings of DARPA Information

Survivability Conference and Exposition (DISCEX II), June 2001 which discusses security with

large scale systems.

Attack Detection in Large Networks by Peterson and Bauman published by the IEEE

Proceedings of DARPA Information Survivability Conference and Exposition (DISCEX II), June

2001 addresses the impact of large systems characteristics on security.

Security of Distributed Object–Oriented Systems by MacDonnell et al. published by

the IEEE Proceedings of DARPA Information Survivability Conference and Exposition

(DISCEX II), June 2001 addresses object-oriented security mechanisms that can provide scalable

fine-grained access control in both applications and at the boundary controller using CORBA and

JAVA.

26

Generic Problems Generic Solutions

Domain-Based Problems

 Structured Problems

Semi- Structured
 Problems

 Ill-Structured
 Problems

Application-Based
Problems

Domain-Based Solutions

Problem-Based

 Process
 Based

Product-Based

Architectures
Frameworks
Patterns

Ad-Hoc Solutions
Criteria for

Tailored to

Criteria for

Tailored to

Criteria for

Tailored to

Figure 1. Generic and specialized software development in the problem-solving context

27

Figure 2. Security-driven requirements analysis process

28

Figure 3. A software engineering approach to systems security via traceability analysis

29

Figure 4. Seven-layer conceptual model for defense strategies in security-focused system design

Threats

Correction

Recovery

Limitation

Detection

Prevention
Controls

System
Vulnerability

30

Figure 5. A basic taxonomy for security control techniques in software systems (based on Turban et
al., 2002)

31

Table 1. The Roles of Pervasive Systems Development Layers

Layer Rationale Software Development Ramifications

Physical -The flow of control in pervasive
applications may depend on signals
received from or to user’s physical
body.
-Excellent software architecture is
ineffective in pervasive devices
unless well supported by hardware
design that mirrors physical
characteristics of humans.

Designing effective hardware architectures
is crucial to software design since software
effectiveness is dependent on hardware
usability and hardware is irreplaceable as in
desktop computing.

Resource -Represents the infrastructure of
pervasive software applications
(operating systems, logical devices,
system API, user interface, network
protocol)

-ROM-based operating systems should be
reliable with early releases since it will be
very costly to make any upgrades
thereafter.
-System resources must be matched to user
goals ands needs.
-User interfaces must be intuitive and
consistent. They must accommodate users’
language and physical limitations.
-Networking features should be
automatically available, self-configuring
and compatible with existing technology.
-System storage must enable users to
access, retrieve, and organize information
the way that suit their requirements.
-Execution environment and volatile
memory should be responsive and provide
not only speed but also sense of control
with the ability of multithreading and
multitasking.

Abstract Represents the direct software
application that the user will use.

-Maintaining compatibility between users’
mental model “expectations” and
application logic “state”.
-Considering short time frames available to
pervasive system users for learning about
the system as opposed to desktop users.
-Considering the difficulty of physical
conditions encountered by mobile users
when designing pervasive systems.
-User involvement and participation is
much more critical in pervasive
applications when compared with
traditional applications.

32

Intentional Represents user goals and purposes
in using the pervasive system.

Analyzing the system to determine user
goals and designing the system to fulfill
these goals

33

Table 2. Life Cycle Phases for Real Time Software Systems

Phase Phase Definition Phase Application

Requirements Analysis
and Specification

As in other approaches,
user requirements are
analyzed, and system
specifications are
formulated to elaborate
on these requirements.

-State transition diagrams are preferred to describe
the different states of the system to the user.
Object-oriented-UML–based state transition
diagrams is the next generation to carry out this
technique more effectively.
-Any operator interaction with the system should
also be explicitly specified.
-Throwaway repaid prototyping techniques have
proven to be extremely effective in requirements
analysis for real-time systems.

System Design While the system is
structured into tasks as
in other software
systems, real time
systems are designed
with focus on concurrent
processes and task
interfaces.

-The asynchronous nature of the functions within
the system is a key characteristic that distinguishes
decomposing real-time software systems into
concurrent tasks.
-Data flow diagrams, and event-trace diagrams are
very effective techniques in mapping this phase.

Task Design Each task is structured
into modules, and
module interfaces are
defined.

Task-structure charts with intensive project and
team management are essential to carry out task
deign efficiently.

Module Construction Detailed design, coding,
and unit testing of each
module is carried out.

This is similar to module construction in other
system development approaches.

Task and System
Integration

Modules are integrated
and tested to form tasks,
which, in turn, are
gradually integrated and
tested to form the total
system.

-Incremental system development is used to
achieve task and system integration.

System Testing The whole system or
major subsystems are
tested to verify
conformance with
functional
specifications. To
achieve greater
objectivity, system
testing is best performed
by independent test
teams.

Automated testing is widely used for real-time
systems.

Acceptance Testing This is performed by the
user.

-Extends user involvement to the validation and
verification stages after system delivery.

34

Table 3. The Four Generations of Information Systems Security Approaches

Generation Drivers Strategies Techniques Problems
First

(Early 80’s)

-Generic thinking
-Common sense
principles.

Linking
requirements
“what to do” to
existing
capabilities:
“what can be
done”.

Risk analysis Gaps between generic
strategies and special needs.

Second

(Late 80’s)

-Some focus on
organization
requirements.

Formal methods. Control points
and checklists.

Considering natural,
functional and technical
requirements while ignoring
the social nature of
organizations.

Third

(Early 90’s)

-Business processes
-Focus on specific
organization
requirements

Information
systems
modeling.

-Responsibility
modeling
- Security
semantics
-Logical
approach
-ERM, DFD, OO
and business
process
modeling for
security.

Not enough focus on social
requirements of organizations.

Forth

(Late 90’s up

to recently)

-Socio-Technical
Design
-User Participation
-Strong focus on
specific
organizational
requirements

Domain-specific
and application-
driven design for
information
systems security.

-Responsibility
modeling
-Viable
information
systems

Still in its first phases.

