
72 February 2005/Vol. 48, No. 2 COMMUNICATIONS OF THE ACM

COMMUNICATIONS OF THE ACM May 2005/Vol. 48, No. 5 73

Organizations must carefully assess their readiness
before treading the path of agility.

By Sridhar Nerur, RadhaKanta Mahapatra,
and George Mangalaraj

Software development methodologies are constantly
evolving due to changing technologies and new demands
from users. Today’s dynamic business environment has
given rise to emergent organizations that continuously

adapt their structures, strategies, and policies to suit the new
environment [12]. Such organizations need information systems
that constantly evolve to meet their changing requirements—but
the traditional, plan-driven software development methodologies
lack the flexibility to dynamically adjust the development process.

IL L U S T R A T I O N B Y RI C H A R D DO W N S

Challenges of Migrating to
Agile Methodologies

74 May 2005/Vol. 48, No. 5 COMMUNICATIONS OF THE ACM

While object-oriented (OO)
approaches provide a viable
method to incrementally
develop information systems, a

host of new methods called agile development
methodologies or lightweight methodologies claim to
go a step further in overcoming the limitations of tra-
ditional plan-driven ones. A number of software
development methods such as extreme programming
(XP), feature-driven development, crystal clear
method, scrum, dynamic systems development, and
adaptive software development, fall into this category
[1, 4, 7]. Our objective here is to articulate the chal-
lenges that CIOs and project managers must be cog-
nizant of in their endeavors to
embrace the agile philosophy
of software development.

While traditional method-
ologies, such as life cycle-
based structured and OO
approaches, continue to domi-
nate the systems development
arena, numerous opinion
pieces and several surveys
clearly demonstrate the grow-
ing popularity of agile
methodologies. The advent of
these methodologies has
divided the software develop-
ment community into oppos-
ing camps of traditionalists
and agilists, with each group
proclaiming the superiority of
its own methodology. A more
balanced view of the two com-
peting methodologies is
offered by a few who suggest
that each method has its
strengths as well as limitations, and is appropriate for
specific types of projects [1, 2, 6, 10]. According to
Boehm, “organizations must carefully evolve toward
the best balance of agile and plan-driven methods that
fits their situation [1].” Clearly, most organizations
cannot ignore the agile wave, but for organizations
steeped in the traditional systems development
methodologies, adoption of agile methodologies will
likely pose several challenges, since the two software
development methodologies are grounded in oppos-
ing concepts.

Past research shows that software development
process changes represent complex organizational
change phenomena and cannot be accomplished
merely by replacing current tools and technologies
with new ones [11]. Such changes may impact several

aspects of the organization including its structure,
culture, and management practices. Therefore,
understanding organizationwide ramifications of a
change phenomenon is a critical first step in planning
and managing such changes. In this article, we have
consciously taken an organizational and managerial
perspective of this change phenomenon primarily
because such a perspective, although critical in imple-
menting organizational change, is largely missing
from the current discourse on adoption of agile
methodologies. We provide a brief comparison of
agile development methodologies with traditional
systems development methodologies, and discuss the
challenges of adopting agile methodologies.

Software development is a
complex activity character-
ized by tasks and require-
ments that exhibit a high
degree of variability [2, 8].
Uncertainties are further
compounded by the diversity
and unpredictability of peo-
ple who engage in such tasks
[5, 6]. The changing nature
and sophistication of tools
(for example, a development
environment including pro-
gramming languages, tech-
niques, and so on) may also
exacerbate development
problems. A rationalized,
engineering-based approach
has dominated software
development almost since its
inception. Such an approach,
grounded in the principles of
hard systems thinking,
assumes that problems are

fully specifiable, and that an optimal and predictable
solution exists for every problem [3]. Extensive upfront
planning is the basis for predicting, measuring, and
controlling problems and variations during the devel-
opment life cycle. The traditional software develop-
ment approach is process-centric, guided by the belief
that sources of variations are identifiable and may be
eliminated by continually measuring and refining
processes [4]. The primary focus is on realizing highly
optimized and repeatable processes. Thus, planning
and control accomplished by a command and control
style of management provide the impetus for develop-
ing a software product [8].

Systems development in the traditional approach is
guided by a life cycle model such as the waterfall
model, the spiral model, or some variations of these.

most organizations
cannot ignore the
agile wave, but for
those steeped in
traditional systems
development,
adoption of agile
methodologies will
likely pose several
challenges.

The life cycle model specifies the tasks to be per-
formed and the desired outcomes of each phase, and
assigns roles (such as systems analyst, programmer) to
individuals who will perform these tasks. In addition
to the end product of working code, these method-
ologies also produce a large amount of documentation
that codifies process and product knowledge. Com-
munication among project participants is formalized
through these documents. Customers play an impor-

tant role during specification development, but their
participation is minimal in other activities. These
methodologies are appropriate both for OO and non-
OO technologies.

Unlike the traditional methodologies, agile
methodologies deal with unpredictability by relying
on people and their creativity rather than on
processes [5]. They are characterized by short itera-
tive cycles of development driven by product fea-
tures, periods of reflection and introspection,
collaborative decision making, incorporation of rapid
feedback and change, and continuous integration of
code changes into the system under development [4,
7, 8]. A project is broken down into sub-projects,
each of which typically involves planning, develop-
ment, integration, testing, and delivery. Developers
work in small teams with customers (representing
system users) as active team members. The features to
be implemented in each development cycle are
jointly decided by the customer and the rest of the
development team. Collaborative decision making
involving stakeholders with diverse backgrounds and
goals is thus a characteristic of agile development.
Agile methodologies favor a leadership-and-collabo-

ration style of management where the project man-
ager’s role is that of a facilitator or coordinator [8].

The deliverable of each development cycle is work-
ing code that can be used by the customer. Agile
methods discourage documentation beyond the
code. Product knowledge, therefore, becomes tacit.
Rotation of team membership ensures this knowl-
edge is not monopolized by a few individuals. Fur-
ther, the iterative strategies that characterize agile

methodologies are best supported
by OO technologies. The evolu-
tionary-delivery model proposed
by Gilb provides a meaningful
framework to guide agile software
development [9].

To summarize, agile develop-
ment is characterized by social
inquiry in which extensive collab-
oration and communication pro-
vide the basis for collective action
[5, 6, 8]. Diverse stakeholders
including developers and end
users go through repeated cycles
of thought-action-reflection that
foster an environment of learning
and adaptation. Team members,
empowered with more discre-
tionary and decision-making
powers, are not confined to a spe-
cialized role. This increases the
diversity/variety of the teams and
enables them to self-organize and
respond with alacrity to emergent
situations. Table 1 summarizes

the comparison between traditional and agile
methodologies.

Making Agile Methodologies Work
For decades organizations have relentlessly pursued
the goal of creating optimized and repeatable
processes [4, 7, 8]. The stability they yearned for
presents one of the biggest hurdles to adopting agile
development methodologies. The variations
between traditional and agile methodologies previ-
ously detailed suggest that organizations must
rethink their goals and reconfigure their human,
managerial, and technology components in order to
successfully adopt agile methodologies. Here, we
identify the key management, organizational, peo-
ple, process, and technological issues in adopting
agile methodologies. Table 2 summarizes the main
issues involved under each component.

Management and organizational issues. Organiza-
tional culture has a significant impact on the social

COMMUNICATIONS OF THE ACM May 2005/Vol. 48, No. 5 75

Traditional

Fundamental
Assumptions

Control

Management Style

Knowledge
Management

Role Assignment

Communication

Customer’s Role

Project Cycle

Development Model

Desired Organizational
Form/Structure

Technology

Systems are fully specifiable,
predictable, and can be built
through meticulous and
extensive planning.

Process centric

Command-and-control

Explicit

Individual—favors
specialization

Formal

Important

Guided by tasks or activities

Life cycle model (Waterfall,
Spiral, or some variation)

Mechanistic (bureaucratic
with high formalization)

No restriction

Agile

High-quality, adaptive software can be
developed by small teams using the principles
of continuous design improvement and
testing based on rapid feedback and change.

People centric

Leadership-and-collaboration

Tacit

Self-organizing teams—encourages role
interchangeability

Informal

Critical

Guided by product features

The evolutionary-delivery model

Organic (flexible and participative
encouraging cooperative social action)

Favors object-oriented technology

Table 1. Traditional
versus agile software
development.

structure of organizations, which in turn influences
the behavior and actions of people [3, 6, 8]. The val-
ues, norms, and assumptions of an organization are
stabilized and reinforced over time, and are reflected
in the policies embodied in organizational routines.
Culture exerts considerable influence on decision-
making processes, problem-solving strategies, innova-
tive practices, information filtering, social
negotiations, relationships, and planning and control
mechanisms. Neither culture nor mind-sets of people
can be easily changed,
which makes the move to
agile methodologies all
the more formidable for
many organizations [2].

As mentioned, agile
methodologies require a
shift from command-and-
control management to
leadership-and-collabora-
tion. The organizational
form that facilitates this
shift needs the right blend
of autonomy and cooper-
ation to achieve the
advantages of synergy
while providing flexibility
and responsiveness [3].
The project manager’s traditional role of planner and
controller must be altered to that of a facilitator who
directs and coordinates the collaborative efforts of
those involved in development, thus ensuring that the
creative ideas of all participants are reflected in the
final decision [8]. The biggest challenge here is to get
the project manager to relinquish the authority he/she
previously enjoyed.

Knowledge management is of vital importance to
organizations. Traditional development approaches
create much documentation. Such records serve as
useful artifacts for communication and traceability of
design. Agile methodologies, on the other hand,
encourage lean thinking and cutting down on over-
head, particularly documentation. Much of the
knowledge in agile development is tacit and resides in
the heads of the development team members [1, 8].
This can make the organization heavily dependent on
the development teams and can potentially shift the
balance of power from the management to the devel-
opment teams. Such a situation may not be accept-
able to many organizations. This impasse can be
resolved by determining which knowledge should be
codified and what may remain tacit.

Agile development relies on teamwork, as opposed
to individual role assignment that characterizes tradi-

tional development. Performance measurement and
reward systems, therefore, must be suitably designed
for successful adoption of agile methodologies.

People-related issues. A cooperative social process
characterized by communication and collaboration
between a community of members who value and
trust each other is critical for the success of agile
methodologies [5, 8]. For programmers accustomed
to solitary activities or working with relatively homo-
geneous groups of analysts and designers, the ideas of

shared learning, reflec-
tion workshops, pair-
programming, and
collaborative decision
making may be over-
whelming.

At the present time,
there is little evidence to
suggest that agile princi-
ples will work in the
absence of competent
and above-average peo-
ple [1, 2]. This can pose
serious problems related
to staffing and morale.
First, it will be difficult
to find enough personnel
to staff software develop-

ment teams that use agile
methodologies. Second, it will
create a culture of elitism within

the systems development group that may affect the
morale of non-agile developers.

In an agile environment, the development team
comprising software developers and the customer
makes most of the decisions. This creates a pluralist
decision-making environment due to the diverse
backgrounds, attitudes, goals, and cognitive disposi-
tions of the team members [3]. Decision making in
this environment is more difficult compared to the
traditional approach where the project manager is
responsible for most decisions. It may take an organi-
zation enormous effort, time, and patience to build a
culture of trust and respect among its employees to
facilitate such collaborative decision making.

The success of agile development hinges on find-
ing customers who will actively participate in the
development process. Further, the customers are
expected to be “Collaborative, Representative, Autho-
rized, Committed, and Knowledgeable” [2]. It is not
an easy task to find such persons, especially for com-
plex systems.

Process-related issues. The problem of changing atti-
tudes and practices from process-centric to people-

76 May 2005/Vol. 48, No. 5 COMMUNICATIONS OF THE ACM

Management and organizational

People

Process

Technology (Tools and Techniques)

• Organizational Culture
• Management Style
• Organizational Form
• Management of Software Development Knowledge
• Reward Systems

• Working effectively in a team
• High level of competence
• Customer relationships—commitment, knowledge, proximity, trust, respect

• Change from process-centric to a feature-driven, people-centric approach
• Short, iterative, test-driven development that emphasizes adaptability
• Managing large, scalable projects
• Selecting an appropriate agile method

• Appropriateness of existing technology and tools
• New skill sets—refactoring, configuration management, JUnits

Table 2. Key issues in
migrating to agile.

centric is acute. Organizations that have for years
attempted to achieve higher levels of CMM are par-
ticularly susceptible to this problem. The idea of
changing a process to fit the capabilities and compe-
tencies of people and the characteristics of the project,
rather than using a rigid process encompassing stan-
dardized activities may be sound [5], but can be
achieved only through significant investment of time,
effort, and capital.

Traditional processes are
compliance-driven and activi-
ties- and measurement-based,
aimed at providing assurance
[1, 2, 7]. Agile methodologies
rely on speculation, or planning
with the understanding that
everything is uncertain, to
guide the rapid development of
flexible and adaptive systems of
high value [7, 8]. They stress
the importance of assessing as
opposed to measuring, and are
highly tolerant of change. One
of the biggest barriers to migra-
tion is the change in a process
model from a life cycle model
to one that supports feature-
based development using evolu-
tionary and iterative
development. Such a change
entails major alterations to
work procedures, tools and
techniques, communication
channels, problem-solving
strategies, and roles of people.

Agile methodologies place a premium
on testing, urging developers to
develop the test code upfront [8].
The notion of test-driven develop-

ment (TDD) is becoming increasingly popular within
the agile community. TDD is motivated by the fact
that thinking about and writing tests prior to coding
will make the code more understandable and main-
tainable. TDD also facilitates continuous integration
of new code and/or changes without adversely affect-
ing the existing code base. However, the firmly
entrenched tradition of writing code prior to testing
must be overcome to institutionalize the practice of
early and frequent testing. TDD also redefines the
role of the quality assurance function in systems devel-
opment.

Questions have also arisen about the efficacy of
agile approaches with regard to large projects where

scalability is paramount [2, 10]. Due to the novelty of
agile methodologies, very little empirical data is avail-
able regarding each method. The biggest challenge
facing the project manager, therefore, is the selection
of an appropriate method from the host of agile meth-
ods currently available. This is very much like the
predicament that early adopters of object technology
faced. While all agile methods, to some extent, con-

form to the tenets outlined in
the agile manifesto, they are not
all alike in every respect. They
differ in terms of team size,
code ownership, duration of
each iterative cycle, emphasis
on upstream and downstream
activities, and the mechanisms
for rapid feedback and change
[2, 7]. In the absence of a uni-
fied agile approach, organiza-
tions must decide which is
most compatible with their
existing practices.

Technological issues. An orga-
nization’s existing technology
can impact the efforts to
migrate to agile methodologies.
Companies that rely solely on
mainframe technologies may
find it difficult to assimilate
agile methods compared to
those that use OO develop-
ment techniques. Tools play
a critical role in successful
implementation of a software
development methodology.
Organizations planning to

adopt agile methodologies must invest in tools that
support and facilitate rapid iterative development,
versioning/configuration management, JUnits, refac-
toring, and other agile techniques. Of course, tools
alone cannot make software development successful.
People must be trained to use them correctly.

Conclusion
The principles of agile methodologies parallel the
ideas delineated in Checkland’s Soft Systems Method-
ology and Ackoff ’s Interactive Planning [3]. These
reflect the essential characteristics of complex adaptive
systems [4, 7, 8], and have the potential to endow
organizations and systems with emergent properties.
While the opportunities and benefits that agile
methodologies afford make them attractive, organiza-
tions should be circumspect in embracing them or in
integrating them with existing practices [1].

COMMUNICATIONS OF THE ACM May 2005/Vol. 48, No. 5 77

While the
opportunities and
benefits that agile
methodologies
afford make
them attractive,
organizations
should be
circumspect in
embracing them
or in integrating
them with existing
practices.

Agile methodologies are ideal for projects that
exhibit high variability in tasks (because of changing
requirements), in the capabilities of people, and in the
technology being used [8]. As Highsmith notes, they
are also appropriate for projects where the value of the
product to be delivered is very important to cus-
tomers. Organizational forms and cultures conducive
to innovation may embrace agile methods more eas-
ily than those built around bureaucracy and formal-
ization. Organizations must carefully assess their
readiness before treading the path of agility. The
issues raised in this article are invaluable in making
this judgment.

References
1. Boehm, B. Get ready for agile methods, with care. Computer (Jan.

2002), 64–69.
2. Boehm, B. and Turner, R. Balancing Agility and Discipline: A Guide for

the Perplexed. Addison-Wesley, Boston, MA, 2004.
3. Cavaleri, S. and Obloj, K. Management Systems: A Global Perspective.

Wadsworth Publishing Company, CA, 1993.
4. Cockburn, A. and Highsmith, J. Agile software development: The

business of innovation. IEEE Computer (Sept. 2001), 120–122.
5. Cockburn, A. and Highsmith, J. Agile software development 2: The

people factor. IEEE Computer (Nov. 2001).
6. Cockburn, A. Agile Software Development. Addison-Wesley, Boston,

MA, 2002.
7. Highsmith, J. Agile Software Development Ecosystems. Addison-Wesley,

Boston, MA, 2002.

8. Highsmith, J. Cutter Consortium Reports: Agile Project Management:
Principles and Tools 4, 2 (Feb. 2003), Cutter Consortium, Arlington,
MA.

9. MacCormack, A. Product-development practices that work: How
Internet companies build software. MIT Sloan Management Review
(Winter 2001), 75–84

10. Orr, K. CMM versus Agile Development: Religious Wars and Software
Development. Agile Project Management Executive Report 3, 7 (2002),
Cutter Consortium, Arlington, MA.

11. Sircar, S., Nerur, S.P., and Mahapatra, R. Revolution or Evolution? A
Comparison of Object-Oriented and Structured Systems Development
Methods. MIS Quarterly 25, 4 (Dec. 2001), 457–471.

12. Truex, D.P., Baskerville, R. and Klein, H. Growing systems in emer-
gent organizations. Commun. ACM 42, 8 (Aug. 1999), 117–123.

Sridhar Nerur (snerur@uta.edu) is an assistant professor of
information systems at the University of Texas at Arlington.
RadhaKanta Mahapatra (mahapatra@uta.edu) is an associate
professor of information systems at the University of Texas at Arlington.
George Mangalaraj (mangalaraj@uta.edu) is a doctoral student
at the University of Texas at Arlington.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2005 ACM 0002-0782/05/0500 $5.00

c

78 May 2005/Vol. 48, No. 5 COMMUNICATIONS OF THE ACM

STAY ON TOP OF ACM NEWS WITH

MEMBERNET
NOW IN MEMBERNET:

The awards issue:
• ACM A.M. Turing Award recognizes pioneers of the Internet
• Reports from SIGCSE
• CS&IT Education Symposia
• Career News launches
• Previews of Computers, Freedom and Privacy and Human Factors in Computing

Systems (CHI) conferences
• Updates from Job Migration Task Force, Computer Science Teachers Association

And much more!
All online, in MemberNet: www.acm.org/membernet.

