
Toward a Comprehensive Framework for Software Process Modeling
Evolution

Osama Eljabiri Fadi P. Deek
 New Jersey Institute of Technology New Jersey Institute of Technology
 CIS Department CIS Department
 University Heights University Heights
 Newark, NJ 07102 Newark, NJ 07102

omae@home.com deek@njit.edu

Abstract

 Software process modeling has undergone extensive
changes in the last three decades, impacting process'
structure, degree of control, degree of visualization,
degree of automation and integration. These changes
can be attributed to several factors. This paper studies
two of these factors, the time dimension and the
interdisciplinary impact, and assesses their effect on the
evolution of process modeling. A literature survey for
software process modeling was carried out which
provided evidence of how the time dimension and the
interdisciplinary impact triggered process evolution
and changes in methodology, technology, experience
and business requirements. Finally, the paper
concludes with a theoretical framework to serve as an
illustrative model for the effects of the time dimension
and interdisciplinary impact on process modeling
evolution. This framework can serve as to develop more
advanced models for technological forecasting in
software process modeling evolution.

Keywords

Software engineering, software process modeling,
software process evolution, interdisciplinary impact,
change in time, software development, software project
management.

1. Introduction

Examining the software development life cycle
literature reveals a wealth of approaches that have been
introduced in the last three decades. Many vary by
titles, rationales, structures, degree of mapping and
visualizing the real world applications and the extent of
how these models reflect strategic goals in
organizations. Moreover, there are a variety of
approaches to classifying these models and to providing

criteria for applying them to diverse business
requirements. This can be attributed to several factors
including evolving experiences of software engineers,
degree of problem complexity, organizational goals,
availability of technology, human factors and cognitive
styles in addressing problems. Although several studies
have examined the software development process
literature at different levels of detail and abstraction [1,
2, 3, 4, 5, 6, 7, 8], there is still a benefit to a
comprehensive review of the current software process
literature, with a focus on the evolution of software
process models as a function of time. As already
indicated, there were several factors contributing to the
diversity of software process models. One of these
factors is the interdisciplinary impact influencing the
development of software process models. The
combined effect of the time dimension and the
interdisciplinary impact might not only explain the
evolution of process models but also may be useful in
perhaps foreseeing future developments of process
modeling.

2. Literature Review

 The evolution of process models started by the code
and fix model [2], which fits the solution into the
problem rather than drawing solutions from well-
defined problems. Pressman [9] presented a
comprehensive survey, though some approaches were
not considered, and introduced the following process
models: linear sequential (classical waterfall),
prototyping model, RAD model, incremental model,
spiral model, component assembly model, concurrent
development model.

Somerville [3] placed the process models he
addressed in four main categories: the waterfall
approach, the evolutionary development, the formal
transformation, and assembly from reusable
components. Evolutionary development is based on
stages that consist of increments where "the directions

mailto:omae@home.com
mailto:deek@njit.edu

of evolution are determined by operational experience"
[2].
 Behforooz and Hudson introduced another useful
classification [4]. They considered all process models
virtually as versions of the waterfall model and
introduced models that were overlooked by others such
as the Department Of Defense (DOD) system
development life cycle and the NASA model.

The waterfall model has played a significant
role in process modeling evolution over the decades and
has become the basis for most software acquisition
standards [2].

Although the waterfall model has its
drawbacks, it is still the super class of many process-
modeling approaches in software engineering. The
unified software development approach proposed by
Jacobson et al. [5] addressed some of the problems with
previous models using an object-oriented approach and
UML standards. This model is use-case driven,
architecture centric, iterative and incremental, and has
new phases: Inception, elaboration, construction and
transition. While the unified process model can be
characterized in terms of its object-oriented
methodology and iterative nature, a framework by
Abdel-Hamid et al. [10] was introduced to address
management considerations coupled with software
economics aspects. This framework recognized the
impact of the control of resources variable on the
overall performance of process models and thus gained
popularity. IBM Cleanroom is another team oriented
approach to software engineering in which intellectual
control of the work is ensured by ongoing review by a
qualified small team and the use of the formal methods
in all the process phases and statistical quality control
of an incremental development process [11].

Process models with built in object-oriented
techniques can be easily modified, extended and viewed
at appropriate levels of abstraction. Their application
areas include "development of an abstract theory of
software process, formal methods of software process,
definition and analysis, simulation of software process
and the development of automated enactment support"
[12].
 Although object-oriented methodologies have proven
to be advantageous in process modeling, SOFL
(structured-object-oriented-formal language) [13] is an
approach that shows how integration between
structured and object-oriented methodologies can add
more value to a process model. This approach also
combines static and dynamic modeling. These
integrations aimed to develop a process model that
overcomes formal methods problems, which limited
their use in the industry.

Introducing risk-driven process models was a
significant breakthrough in process modeling after a

large library of models based on document-driven or
code-driven approaches as "the evolving risk driven
approach provided a new framework for guiding the
software process" [2]. This was referred to as the spiral
model, which was to be adaptable to the full range of
software project situations and flexible to accommodate
a high dynamic range of technical alternatives and user
objectives. However, the spiral model required further
calibration to be fully usable in all situations [2]. In an
effort to resolve model conflicts, Boehm [14] expanded
the spiral model to another version named "win-win
spiral model". In this version of spiral model Boehm
used a stakeholder win-win approach to determine the
objectives, constraints and alternatives for each cycle of
the spiral.

The prototyping model can be used as a
generic tool in the software development process. Not
only it can be integrated with other process models, but
also it can assist in developing the requirements
analysis phase. Furthermore, it can be used as an
experimental tool in assessing the efficiency of the
entire development process. In this respect, prototyping
can be utilized as a mechanism in monitoring software
processes before investing a great deal of efforts and
resources [15]. The spiral model can also be utilized as
a process model generator [16]. Boehm et al. used the
spiral model as a framework for eliciting or generating
adequate process models by means of the decision table
technique. Another example for combined effect of
both interdisciplinary impact and change in
methodology is the commercial off-the-shelf (COTS)
approach, which gained more attention recently. COTS
components can be a complete application, an
application generator, a problem-oriented language, or a
framework in which specific applications are addressed
by parameter choices [17].
 Web development life cycle, recently referred to as
web engineering, is also gaining an increasing interest
in software development [18]. In order to develop and
maintain web sites in a cost-efficient way throughout
their entire life cycle, sophisticated methods and tools
have to be deployed [18].

The reengineering process model is an
approach based on business metrics of cost, time, and
risk reduction as a result of substantial change in
existing processes, which would create breakthroughs
in the final product. According to Somerville [3],
software reengineering has three main phases: defining
the existing system, understanding and transformation,
and reengineering the system. While traditional models
were supported by loosely coupled CASE tools that
provide assistance independently each phase of the life
cycle, more sophisticated architectures were lately
introduced. These provide mechanisms to ensure proper
tool integration and interface capable of monitoring and

coordinate the activities and actions of software
projects and team members [19]. The TAME process
modeling approach represents a step toward integrating
process modeling with product metrics along with the
automation capabilities of CASE tools in a more
comprehensive framework [1]. Integrating experimental
data with CASE tools can also make the process model
much more efficient by allowing data collection and
knowledge base building throughout the development
process. This approach has been introduced through the
CAESE methodology where the tools and the
experiment design combine to meet the software
production goals as assessing software product metrics
will be more efficient with the statistical analysis based
on experiments accompanied by the high degree of
CASE automation [20]. The flow of events represented
by the cleanroom development increment life cycle
based on formal techniques can be categorized in the
same class [21].

Finally, the cognitive prospective and human
factors in developing process models are also relevant
since problem solving cannot be achieved efficiently
without adopting adequate strategies that are based on
correct understanding of humans and their real needs
[22]. Behavioral approaches have enhanced software
usability from a user-oriented prospective particularly
in the area of user interface design, thus influencing
process modeling as well [23].

3. Analysis

The software development life cycle offers a
methodology that developers follow to achieve software
solutions for real world problems. This methodology
reflects the evolving of the software solutions through a
timeframe of a development process. It also represents
the technical, human and financial resources required to
perform the software project activities. In other words,
it is a problem-solving framework that works within
limited time and limited resources.
 As identified by Jaccheri et al., software processes
are complex activities that affect critical parameters
such as final product quality and costs [24]. Therefore,
process control is significant to assure software product
quality, as the duality of product and the process is an
important element in software engineering [9]. The
control capability is not only utilized for the purpose of
preventive maintenance and corrective actions but also
for quality assurance, quality improvement and
forecasting. both in their structure and outcomes.

Methodology adopted is an important factor
that should be considered. Object-oriented methodology
has a different impact than the process-oriented
methodology on software development life cycle
modeling.

The degree of complexity in business
problems is also an influential factor that should be
considered. The change in the nature of business
problems added more complexity to business processes,
which resulted in changes in business requirements as a
function of time.
 The time dimension variable and its associated
factors impact the degree of visualization across
process models. Degree of visualization is also a
measure of process modeling evolution.

4. Conclusion

In conclusion, the paper suggests a final
conceptual framework. This framework indicates the
effect of the time dimension and the interdesciplinary
impact on the evolution of process modeling. It also
indicates the effect of the time dimension on the
interdesciplinary impact. This cross-relationship can be
attributed to the change in experience and business
requirements that triger the involvement of more
deciplines in the assessment and development of more
effecient process models.

Based on this framework, several implications
could be extracted.
 The first implication is the significant role of the four
intervenning variables (i.e: change in experience,
technology, methodology and business requirements) in
transferring the effect of the time dimension on the
evolution of process modeling. Another implication is
that the dgree of automation, degree of visualization,
degree of control, degree of integration and changes in
structure could be used as measures of the extent in
which process models evolve. The third implication is
that the interdesciplinary impacts have had critical
effects on process model evolution. This effect was
coupled with the time dimension variable and trigered
by its four intervenning variables. Cognitive
phsycology played an important role in the context of
behavioral and protpotyping models as more user
involvement implies more human considerations. This
can also be understood in the context of the customer
economy as user satisfaction becames an issue in
evaluating information systems. Software economics is
another significant issue in this framework as it trigers
the attention to risk considerations. Software economics
encompasses several metrics of business performance
that can also be addressesd in future studies. These
business metrics that should be reflected in process
modeling include cost reduction, profit maximazation,
market share, competitive advantage, and the effect of
project diversification in large organizations.

Other interdecilpinary components addressed
in this paper include management and industrial
engineering which are correlated. Management had a

significant effect on process modeling structure as it
allowed the incorporation of system dynamics
subsequent to static modeling. Industrial engineering
drew the attention to quality assurance standards
applied to business processes which motivated software
engineers to develop standards such as ISO9001 and the
CMM model. The paper also discussed the impact of
mathematics on the evolving of formal mothods and
specification languages. In sum, this paper presents a
suggested framework for a better understanding of the
evolution of process modeling in terms of the time
dimension and interdisciplinary impact. This
framework can be used as an explanatory model of
process modeling history and evolution, as well as for
predictive purposes and technological forecasting.

References

 [1] Victor R. Basili and H. Dieter Rombach, "The TAME
Project: Towards Improvement-Oriented Software
Environments", IEEE Transactions on Software Engineering,
vol. SE-14, no. 6, June 1988, pp. 752-772.
[2] Barry Boehm, "A Spiral Model of Software Development
and Enhancement", IEEE Computer, vol. 21, no. 5, May
1988, pp. 61-72.
[3] Ian Somerville, Software Engineering, New York, NY,
Addison-Wesley, ISBN 0-201-17568-1, 1995.
[4] Ali Behforooz,, Software Engineering Fundamentals,
ISBN 0-19-510539-7, Oxford university press, New York,
1996.
[5] Ivar Jacobson, Grady Booch and James Rambaugh, “The
Unified Software Development Process”, ISBN: 0-201-
57169-2, Addison Wesley, New York ,1998.
[6] Barry Boehm ,"Anchoring the Software Process", IEEE
Software, July 1996 .
[7] Shari Lawrence Pfleeger, Software Engineering:
Theory and Practice, Upper saddle River, NJ: Prentice
Hall Corp, 1998.
[8] 1074-1995: IEEE Guide for Developing Software Life
Cycle Processes.
[9] Roger Pressman, Software Engineering: A Practitioner's
Approach, 4th Edition, New York, NY McGraw-Hill, ISBN
0070521824- 1438, 1996.
[10] Tarek. Abdel-Hamid and Stuart E. Madnick, “Lessons
Learned From Modeling The Dynamics Of Software
Development “, Communications of the ACM vol. 32, no. 12
Dec. 1989, pp. 14-26.
[11] Carmen J., Trammell, Leon H. Binder and Catherine E.
Snyder, “The Automated Production Control Documentation
System: A Case Study In Cleanroom Software Engineering“,
ACM Transactions on Software Engineering Methodology
vol. 1, no. 1 , Jan. 1992, pp. 81 – 94.
[12] John D. Riley, “An Object-Oriented Approach To
Software Process Modeling And Definition”, Proceedings of
the 1994 conference on TRI-Ada '94, 1994, pp. 16 – 22.
[13] Shaoying Liu, Offutt, A.J., Ho-Stuart, C., Sun, Y., Ohba,
M., “SOFL: A Formal Engineering Methodology For

Industrial Applications“, IEEE Transactions on Software
Engineering, vol. 24, no. 1, Jan. 1998, pp. 24 –45.
[14] Boehm, B. & Port, D., “Escaping The Software Tar Pit:
Model Clashes And How To Avoid Them”, Software
Engineering Notes. 24(1), January 1999 ,pp. 36-48.
[15] Bradac, M., D. Perry, and L. Votta, "Prototyping a
Process Monitoring Experiment", IEEE Transactions on
Software Engineering, vol. 20, no .10, October 1994, pp. 774-
784.
[16] Barry Boehm and Frank Belz, “Experiences With The
Spiral Model As A Process Model Generator”, Proceedings of
the 5th international software process workshop on
Experience with software process models, 1990, pp. 43 – 45.
[17] W. Morven Gentleman, “Effective use of COTS
(commercial-off-the-shelf) software components in long-lived
systems” (tutorial), ACM Proceedings of the 1997
international conference on Software engineering, 1997, pp.
635 – 636.
[18] Jung Reinhard and Robert Winter, “Case For WEB
SITES Towards An Integration Of Traditional Case Concepts
And Novel Development Tools”, Institute for Information
Management University of St. Gallen,
http:\\iwi1.unsg.ch\research\webcase, 1998.
[19] Jayashree Ramanathan and Soumitra Sarkar, "Providing
Customized Assistance for Software Lifecycle Approaches",
IEEE Transactions on Software Engineering, vol. ~14, no. ~6,
June 1988, pp. 749-757.
[20] Torli, K., Matsumoto, K., Nakakoji, K., Takada, Y.,
Takada, S., Shims, K., “Ginger2: An Environment For
Computer-Aided Empirical Software Engineering “, IEEE
Transactions on Software Engineering, vol. 25, no. 4,
July/August 1999, pp. 474 –491.
[21] Carmen J. Trammell, Leon H. Binder and Catharine E.
Snyder, “The Automated Production Control Documentation
System: A Case Study In Cleanroom Software Engineering“,
ACM Transactions Software Engineering Methodology, vol.
1, no. 1 , Jan. 1992, pp. 81 – 94.
[22] Leveson N.G., “Intent Specifications: An Approach To
Building Human-Centered Specifications”, IEEE
Transactions on Software Engineering, vol. 26, no. 1, Jan.
2000, pp. 15 –35.
[23] J. D. Chase, Robert S. Schulman, H. Rex Hartson and
Deborah Hix, ”Development And Evaluation Of A
Taxonomical Model Of Behavioral Representation
Techniques“; ACM, Conference proceedings on Human
factors in computing systems: “celebrating interdependence”,
1994, pp. 159 – 165.
[24] Maria Letizia Jaccheri, Gian Pietro Picco and Patricia
Lago, “Eliciting Software Process Models With The E3
Language “, ACM Transactions on Software Engineering
Methodology, vol. 7, no. 4, Oct. 1998, pp. 368 – 410.

